Metamath Proof Explorer


Theorem pm2mpfo

Description: The transformation of polynomial matrices into polynomials over matrices is a function mapping polynomial matrices onto polynomials over matrices. (Contributed by AV, 12-Oct-2019) (Revised by AV, 6-Dec-2019)

Ref Expression
Hypotheses pm2mpfo.p P = Poly 1 R
pm2mpfo.c C = N Mat P
pm2mpfo.b B = Base C
pm2mpfo.m ˙ = Q
pm2mpfo.e × ˙ = mulGrp Q
pm2mpfo.x X = var 1 A
pm2mpfo.a A = N Mat R
pm2mpfo.q Q = Poly 1 A
pm2mpfo.l L = Base Q
pm2mpfo.t T = N pMatToMatPoly R
Assertion pm2mpfo N Fin R Ring T : B onto L

Proof

Step Hyp Ref Expression
1 pm2mpfo.p P = Poly 1 R
2 pm2mpfo.c C = N Mat P
3 pm2mpfo.b B = Base C
4 pm2mpfo.m ˙ = Q
5 pm2mpfo.e × ˙ = mulGrp Q
6 pm2mpfo.x X = var 1 A
7 pm2mpfo.a A = N Mat R
8 pm2mpfo.q Q = Poly 1 A
9 pm2mpfo.l L = Base Q
10 pm2mpfo.t T = N pMatToMatPoly R
11 1 2 3 4 5 6 7 8 10 9 pm2mpf N Fin R Ring T : B L
12 eqid P = P
13 eqid mulGrp P = mulGrp P
14 eqid var 1 R = var 1 R
15 eqid l L i N , j N P k 0 i coe 1 l k j P k mulGrp P var 1 R = l L i N , j N P k 0 i coe 1 l k j P k mulGrp P var 1 R
16 7 8 9 12 13 14 15 1 10 mp2pm2mp N Fin R Ring p L T l L i N , j N P k 0 i coe 1 l k j P k mulGrp P var 1 R p = p
17 16 3expa N Fin R Ring p L T l L i N , j N P k 0 i coe 1 l k j P k mulGrp P var 1 R p = p
18 7 8 9 1 12 13 14 15 2 3 mply1topmatcl N Fin R Ring p L l L i N , j N P k 0 i coe 1 l k j P k mulGrp P var 1 R p B
19 18 3expa N Fin R Ring p L l L i N , j N P k 0 i coe 1 l k j P k mulGrp P var 1 R p B
20 simpr N Fin R Ring p L f = l L i N , j N P k 0 i coe 1 l k j P k mulGrp P var 1 R p f = l L i N , j N P k 0 i coe 1 l k j P k mulGrp P var 1 R p
21 20 fveq2d N Fin R Ring p L f = l L i N , j N P k 0 i coe 1 l k j P k mulGrp P var 1 R p T f = T l L i N , j N P k 0 i coe 1 l k j P k mulGrp P var 1 R p
22 21 eqeq2d N Fin R Ring p L f = l L i N , j N P k 0 i coe 1 l k j P k mulGrp P var 1 R p p = T f p = T l L i N , j N P k 0 i coe 1 l k j P k mulGrp P var 1 R p
23 19 22 rspcedv N Fin R Ring p L p = T l L i N , j N P k 0 i coe 1 l k j P k mulGrp P var 1 R p f B p = T f
24 23 com12 p = T l L i N , j N P k 0 i coe 1 l k j P k mulGrp P var 1 R p N Fin R Ring p L f B p = T f
25 24 eqcoms T l L i N , j N P k 0 i coe 1 l k j P k mulGrp P var 1 R p = p N Fin R Ring p L f B p = T f
26 17 25 mpcom N Fin R Ring p L f B p = T f
27 26 ralrimiva N Fin R Ring p L f B p = T f
28 dffo3 T : B onto L T : B L p L f B p = T f
29 11 27 28 sylanbrc N Fin R Ring T : B onto L