Metamath Proof Explorer


Theorem pm2mpfval

Description: A polynomial matrix transformed into a polynomial over matrices. (Contributed by AV, 4-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p P = Poly 1 R
pm2mpval.c C = N Mat P
pm2mpval.b B = Base C
pm2mpval.m ˙ = Q
pm2mpval.e × ˙ = mulGrp Q
pm2mpval.x X = var 1 A
pm2mpval.a A = N Mat R
pm2mpval.q Q = Poly 1 A
pm2mpval.t T = N pMatToMatPoly R
Assertion pm2mpfval N Fin R V M B T M = Q k 0 M decompPMat k ˙ k × ˙ X

Proof

Step Hyp Ref Expression
1 pm2mpval.p P = Poly 1 R
2 pm2mpval.c C = N Mat P
3 pm2mpval.b B = Base C
4 pm2mpval.m ˙ = Q
5 pm2mpval.e × ˙ = mulGrp Q
6 pm2mpval.x X = var 1 A
7 pm2mpval.a A = N Mat R
8 pm2mpval.q Q = Poly 1 A
9 pm2mpval.t T = N pMatToMatPoly R
10 1 2 3 4 5 6 7 8 9 pm2mpval N Fin R V T = m B Q k 0 m decompPMat k ˙ k × ˙ X
11 10 3adant3 N Fin R V M B T = m B Q k 0 m decompPMat k ˙ k × ˙ X
12 oveq1 m = M m decompPMat k = M decompPMat k
13 12 oveq1d m = M m decompPMat k ˙ k × ˙ X = M decompPMat k ˙ k × ˙ X
14 13 mpteq2dv m = M k 0 m decompPMat k ˙ k × ˙ X = k 0 M decompPMat k ˙ k × ˙ X
15 14 oveq2d m = M Q k 0 m decompPMat k ˙ k × ˙ X = Q k 0 M decompPMat k ˙ k × ˙ X
16 15 adantl N Fin R V M B m = M Q k 0 m decompPMat k ˙ k × ˙ X = Q k 0 M decompPMat k ˙ k × ˙ X
17 simp3 N Fin R V M B M B
18 ovexd N Fin R V M B Q k 0 M decompPMat k ˙ k × ˙ X V
19 11 16 17 18 fvmptd N Fin R V M B T M = Q k 0 M decompPMat k ˙ k × ˙ X