Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpfo.p |
|
2 |
|
pm2mpfo.c |
|
3 |
|
pm2mpfo.b |
|
4 |
|
pm2mpfo.m |
|
5 |
|
pm2mpfo.e |
|
6 |
|
pm2mpfo.x |
|
7 |
|
pm2mpfo.a |
|
8 |
|
pm2mpfo.q |
|
9 |
|
pm2mpfo.l |
|
10 |
|
pm2mpfo.t |
|
11 |
|
eqid |
|
12 |
|
eqid |
|
13 |
1 2
|
pmatring |
|
14 |
|
ringgrp |
|
15 |
13 14
|
syl |
|
16 |
7
|
matring |
|
17 |
8
|
ply1ring |
|
18 |
16 17
|
syl |
|
19 |
|
ringgrp |
|
20 |
18 19
|
syl |
|
21 |
1 2 3 4 5 6 7 8 10 9
|
pm2mpf |
|
22 |
|
ringmnd |
|
23 |
13 22
|
syl |
|
24 |
23
|
anim1i |
|
25 |
|
3anass |
|
26 |
24 25
|
sylibr |
|
27 |
3 11
|
mndcl |
|
28 |
26 27
|
syl |
|
29 |
2 3
|
decpmatval |
|
30 |
28 29
|
sylan |
|
31 |
|
simplll |
|
32 |
|
fvexd |
|
33 |
|
fvexd |
|
34 |
|
eqidd |
|
35 |
|
eqidd |
|
36 |
31 31 32 33 34 35
|
offval22 |
|
37 |
|
eqid |
|
38 |
|
eqid |
|
39 |
|
simpllr |
|
40 |
|
simprl |
|
41 |
|
simprr |
|
42 |
3
|
eleq2i |
|
43 |
42
|
biimpi |
|
44 |
43
|
ad2antlr |
|
45 |
|
eqid |
|
46 |
2 45
|
matecl |
|
47 |
40 41 44 46
|
syl3anc |
|
48 |
47
|
ex |
|
49 |
48
|
adantrr |
|
50 |
49
|
adantr |
|
51 |
50
|
3impib |
|
52 |
|
simpr |
|
53 |
52
|
3ad2ant1 |
|
54 |
|
eqid |
|
55 |
54 45 1 37
|
coe1fvalcl |
|
56 |
51 53 55
|
syl2anc |
|
57 |
7 37 38 31 39 56
|
matbas2d |
|
58 |
|
simprl |
|
59 |
|
simprr |
|
60 |
3
|
eleq2i |
|
61 |
60
|
biimpi |
|
62 |
61
|
ad2antlr |
|
63 |
2 45
|
matecl |
|
64 |
58 59 62 63
|
syl3anc |
|
65 |
64
|
ex |
|
66 |
65
|
adantrl |
|
67 |
66
|
adantr |
|
68 |
67
|
3impib |
|
69 |
|
eqid |
|
70 |
69 45 1 37
|
coe1fvalcl |
|
71 |
68 53 70
|
syl2anc |
|
72 |
7 37 38 31 39 71
|
matbas2d |
|
73 |
|
eqid |
|
74 |
|
eqid |
|
75 |
7 38 73 74
|
matplusg2 |
|
76 |
57 72 75
|
syl2anc |
|
77 |
|
simplr |
|
78 |
77
|
anim1i |
|
79 |
78
|
3impb |
|
80 |
|
eqid |
|
81 |
2 3 11 80
|
matplusgcell |
|
82 |
79 81
|
syl |
|
83 |
82
|
fveq2d |
|
84 |
83
|
fveq1d |
|
85 |
39
|
3ad2ant1 |
|
86 |
1 45 80 74
|
coe1addfv |
|
87 |
85 51 68 53 86
|
syl31anc |
|
88 |
84 87
|
eqtrd |
|
89 |
88
|
mpoeq3dva |
|
90 |
36 76 89
|
3eqtr4rd |
|
91 |
8
|
ply1sca |
|
92 |
16 91
|
syl |
|
93 |
92
|
ad2antrr |
|
94 |
93
|
fveq2d |
|
95 |
|
simprl |
|
96 |
2 3
|
decpmatval |
|
97 |
95 96
|
sylan |
|
98 |
97
|
eqcomd |
|
99 |
|
simprr |
|
100 |
2 3
|
decpmatval |
|
101 |
99 100
|
sylan |
|
102 |
101
|
eqcomd |
|
103 |
94 98 102
|
oveq123d |
|
104 |
30 90 103
|
3eqtrd |
|
105 |
104
|
oveq1d |
|
106 |
8
|
ply1lmod |
|
107 |
16 106
|
syl |
|
108 |
107
|
ad2antrr |
|
109 |
|
simpl |
|
110 |
109
|
ad2antlr |
|
111 |
1 2 3 7 38
|
decpmatcl |
|
112 |
39 110 52 111
|
syl3anc |
|
113 |
92
|
eqcomd |
|
114 |
113
|
ad2antrr |
|
115 |
114
|
fveq2d |
|
116 |
112 115
|
eleqtrrd |
|
117 |
|
simpr |
|
118 |
117
|
ad2antlr |
|
119 |
1 2 3 7 38
|
decpmatcl |
|
120 |
39 118 52 119
|
syl3anc |
|
121 |
120 115
|
eleqtrrd |
|
122 |
|
eqid |
|
123 |
122
|
ringmgp |
|
124 |
18 123
|
syl |
|
125 |
124
|
ad2antrr |
|
126 |
6 8 9
|
vr1cl |
|
127 |
16 126
|
syl |
|
128 |
127
|
ad2antrr |
|
129 |
122 9
|
mgpbas |
|
130 |
129 5
|
mulgnn0cl |
|
131 |
125 52 128 130
|
syl3anc |
|
132 |
|
eqid |
|
133 |
|
eqid |
|
134 |
|
eqid |
|
135 |
9 12 132 4 133 134
|
lmodvsdir |
|
136 |
108 116 121 131 135
|
syl13anc |
|
137 |
105 136
|
eqtrd |
|
138 |
137
|
mpteq2dva |
|
139 |
138
|
oveq2d |
|
140 |
|
eqid |
|
141 |
|
ringcmn |
|
142 |
18 141
|
syl |
|
143 |
142
|
adantr |
|
144 |
|
nn0ex |
|
145 |
144
|
a1i |
|
146 |
109
|
anim2i |
|
147 |
|
df-3an |
|
148 |
146 147
|
sylibr |
|
149 |
1 2 3 4 5 6 7 8 9
|
pm2mpghmlem1 |
|
150 |
148 149
|
sylan |
|
151 |
117
|
anim2i |
|
152 |
|
df-3an |
|
153 |
151 152
|
sylibr |
|
154 |
1 2 3 4 5 6 7 8 9
|
pm2mpghmlem1 |
|
155 |
153 154
|
sylan |
|
156 |
|
eqidd |
|
157 |
|
eqidd |
|
158 |
1 2 3 4 5 6 7 8
|
pm2mpghmlem2 |
|
159 |
148 158
|
syl |
|
160 |
1 2 3 4 5 6 7 8
|
pm2mpghmlem2 |
|
161 |
153 160
|
syl |
|
162 |
9 140 12 143 145 150 155 156 157 159 161
|
gsummptfsadd |
|
163 |
139 162
|
eqtrd |
|
164 |
|
simpll |
|
165 |
|
simplr |
|
166 |
1 2 3 4 5 6 7 8 10
|
pm2mpfval |
|
167 |
164 165 28 166
|
syl3anc |
|
168 |
1 2 3 4 5 6 7 8 10
|
pm2mpfval |
|
169 |
164 165 95 168
|
syl3anc |
|
170 |
1 2 3 4 5 6 7 8 10
|
pm2mpfval |
|
171 |
164 165 99 170
|
syl3anc |
|
172 |
169 171
|
oveq12d |
|
173 |
163 167 172
|
3eqtr4d |
|
174 |
3 9 11 12 15 20 21 173
|
isghmd |
|