Metamath Proof Explorer


Theorem pm2mpgrpiso

Description: The transformation of polynomial matrices into polynomials over matrices is an additive group isomorphism. (Contributed by AV, 17-Oct-2019)

Ref Expression
Hypotheses pm2mpfo.p P = Poly 1 R
pm2mpfo.c C = N Mat P
pm2mpfo.b B = Base C
pm2mpfo.m ˙ = Q
pm2mpfo.e × ˙ = mulGrp Q
pm2mpfo.x X = var 1 A
pm2mpfo.a A = N Mat R
pm2mpfo.q Q = Poly 1 A
pm2mpfo.l L = Base Q
pm2mpfo.t T = N pMatToMatPoly R
Assertion pm2mpgrpiso N Fin R Ring T C GrpIso Q

Proof

Step Hyp Ref Expression
1 pm2mpfo.p P = Poly 1 R
2 pm2mpfo.c C = N Mat P
3 pm2mpfo.b B = Base C
4 pm2mpfo.m ˙ = Q
5 pm2mpfo.e × ˙ = mulGrp Q
6 pm2mpfo.x X = var 1 A
7 pm2mpfo.a A = N Mat R
8 pm2mpfo.q Q = Poly 1 A
9 pm2mpfo.l L = Base Q
10 pm2mpfo.t T = N pMatToMatPoly R
11 1 2 3 4 5 6 7 8 9 10 pm2mpghm N Fin R Ring T C GrpHom Q
12 eqid Base Q = Base Q
13 1 2 3 4 5 6 7 8 12 10 pm2mpf1o N Fin R Ring T : B 1-1 onto Base Q
14 3 12 isgim T C GrpIso Q T C GrpHom Q T : B 1-1 onto Base Q
15 11 13 14 sylanbrc N Fin R Ring T C GrpIso Q