Metamath Proof Explorer


Theorem pm2mpmhmlem1

Description: Lemma 1 for pm2mpmhm . (Contributed by AV, 21-Oct-2019) (Revised by AV, 6-Dec-2019)

Ref Expression
Hypotheses pm2mpfo.p P = Poly 1 R
pm2mpfo.c C = N Mat P
pm2mpfo.b B = Base C
pm2mpfo.m ˙ = Q
pm2mpfo.e × ˙ = mulGrp Q
pm2mpfo.x X = var 1 A
pm2mpfo.a A = N Mat R
pm2mpfo.q Q = Poly 1 A
pm2mpfo.l L = Base Q
pm2mpfo.t T = N pMatToMatPoly R
Assertion pm2mpmhmlem1 N Fin R Ring x B y B finSupp 0 Q l 0 A k = 0 l x decompPMat k A y decompPMat l k ˙ l × ˙ X

Proof

Step Hyp Ref Expression
1 pm2mpfo.p P = Poly 1 R
2 pm2mpfo.c C = N Mat P
3 pm2mpfo.b B = Base C
4 pm2mpfo.m ˙ = Q
5 pm2mpfo.e × ˙ = mulGrp Q
6 pm2mpfo.x X = var 1 A
7 pm2mpfo.a A = N Mat R
8 pm2mpfo.q Q = Poly 1 A
9 pm2mpfo.l L = Base Q
10 pm2mpfo.t T = N pMatToMatPoly R
11 fvexd N Fin R Ring x B y B 0 Q V
12 ovexd N Fin R Ring x B y B l 0 A k = 0 l x decompPMat k A y decompPMat l k ˙ l × ˙ X V
13 oveq2 l = n 0 l = 0 n
14 oveq1 l = n l k = n k
15 14 oveq2d l = n y decompPMat l k = y decompPMat n k
16 15 oveq2d l = n x decompPMat k A y decompPMat l k = x decompPMat k A y decompPMat n k
17 13 16 mpteq12dv l = n k 0 l x decompPMat k A y decompPMat l k = k 0 n x decompPMat k A y decompPMat n k
18 17 oveq2d l = n A k = 0 l x decompPMat k A y decompPMat l k = A k = 0 n x decompPMat k A y decompPMat n k
19 oveq1 l = n l × ˙ X = n × ˙ X
20 18 19 oveq12d l = n A k = 0 l x decompPMat k A y decompPMat l k ˙ l × ˙ X = A k = 0 n x decompPMat k A y decompPMat n k ˙ n × ˙ X
21 simpll N Fin R Ring x B y B N Fin
22 simplr N Fin R Ring x B y B R Ring
23 1 2 pmatring N Fin R Ring C Ring
24 23 anim1i N Fin R Ring x B y B C Ring x B y B
25 3anass C Ring x B y B C Ring x B y B
26 24 25 sylibr N Fin R Ring x B y B C Ring x B y B
27 eqid C = C
28 3 27 ringcl C Ring x B y B x C y B
29 26 28 syl N Fin R Ring x B y B x C y B
30 eqid 0 R = 0 R
31 1 2 3 30 pmatcoe1fsupp N Fin R Ring x C y B s 0 n 0 s < n a N b N coe 1 a x C y b n = 0 R
32 21 22 29 31 syl3anc N Fin R Ring x B y B s 0 n 0 s < n a N b N coe 1 a x C y b n = 0 R
33 fvoveq1 a = i coe 1 a x C y b = coe 1 i x C y b
34 33 fveq1d a = i coe 1 a x C y b n = coe 1 i x C y b n
35 34 eqeq1d a = i coe 1 a x C y b n = 0 R coe 1 i x C y b n = 0 R
36 oveq2 b = j i x C y b = i x C y j
37 36 fveq2d b = j coe 1 i x C y b = coe 1 i x C y j
38 37 fveq1d b = j coe 1 i x C y b n = coe 1 i x C y j n
39 38 eqeq1d b = j coe 1 i x C y b n = 0 R coe 1 i x C y j n = 0 R
40 35 39 rspc2va i N j N a N b N coe 1 a x C y b n = 0 R coe 1 i x C y j n = 0 R
41 40 expcom a N b N coe 1 a x C y b n = 0 R i N j N coe 1 i x C y j n = 0 R
42 41 adantl N Fin R Ring x B y B n 0 a N b N coe 1 a x C y b n = 0 R i N j N coe 1 i x C y j n = 0 R
43 42 3impib N Fin R Ring x B y B n 0 a N b N coe 1 a x C y b n = 0 R i N j N coe 1 i x C y j n = 0 R
44 43 mpoeq3dva N Fin R Ring x B y B n 0 a N b N coe 1 a x C y b n = 0 R i N , j N coe 1 i x C y j n = i N , j N 0 R
45 7 30 mat0op N Fin R Ring 0 A = i N , j N 0 R
46 45 ad3antrrr N Fin R Ring x B y B n 0 a N b N coe 1 a x C y b n = 0 R 0 A = i N , j N 0 R
47 7 matring N Fin R Ring A Ring
48 8 ply1sca A Ring A = Scalar Q
49 47 48 syl N Fin R Ring A = Scalar Q
50 49 ad3antrrr N Fin R Ring x B y B n 0 a N b N coe 1 a x C y b n = 0 R A = Scalar Q
51 50 fveq2d N Fin R Ring x B y B n 0 a N b N coe 1 a x C y b n = 0 R 0 A = 0 Scalar Q
52 44 46 51 3eqtr2d N Fin R Ring x B y B n 0 a N b N coe 1 a x C y b n = 0 R i N , j N coe 1 i x C y j n = 0 Scalar Q
53 52 oveq1d N Fin R Ring x B y B n 0 a N b N coe 1 a x C y b n = 0 R i N , j N coe 1 i x C y j n ˙ n × ˙ X = 0 Scalar Q ˙ n × ˙ X
54 8 ply1lmod A Ring Q LMod
55 47 54 syl N Fin R Ring Q LMod
56 55 adantr N Fin R Ring x B y B Q LMod
57 47 adantr N Fin R Ring x B y B A Ring
58 eqid mulGrp Q = mulGrp Q
59 8 6 58 5 9 ply1moncl A Ring n 0 n × ˙ X L
60 57 59 sylan N Fin R Ring x B y B n 0 n × ˙ X L
61 eqid Scalar Q = Scalar Q
62 eqid 0 Scalar Q = 0 Scalar Q
63 eqid 0 Q = 0 Q
64 9 61 4 62 63 lmod0vs Q LMod n × ˙ X L 0 Scalar Q ˙ n × ˙ X = 0 Q
65 56 60 64 syl2an2r N Fin R Ring x B y B n 0 0 Scalar Q ˙ n × ˙ X = 0 Q
66 65 adantr N Fin R Ring x B y B n 0 a N b N coe 1 a x C y b n = 0 R 0 Scalar Q ˙ n × ˙ X = 0 Q
67 53 66 eqtrd N Fin R Ring x B y B n 0 a N b N coe 1 a x C y b n = 0 R i N , j N coe 1 i x C y j n ˙ n × ˙ X = 0 Q
68 67 ex N Fin R Ring x B y B n 0 a N b N coe 1 a x C y b n = 0 R i N , j N coe 1 i x C y j n ˙ n × ˙ X = 0 Q
69 68 imim2d N Fin R Ring x B y B n 0 s < n a N b N coe 1 a x C y b n = 0 R s < n i N , j N coe 1 i x C y j n ˙ n × ˙ X = 0 Q
70 69 ralimdva N Fin R Ring x B y B n 0 s < n a N b N coe 1 a x C y b n = 0 R n 0 s < n i N , j N coe 1 i x C y j n ˙ n × ˙ X = 0 Q
71 70 reximdv N Fin R Ring x B y B s 0 n 0 s < n a N b N coe 1 a x C y b n = 0 R s 0 n 0 s < n i N , j N coe 1 i x C y j n ˙ n × ˙ X = 0 Q
72 32 71 mpd N Fin R Ring x B y B s 0 n 0 s < n i N , j N coe 1 i x C y j n ˙ n × ˙ X = 0 Q
73 2 3 decpmatval x C y B n 0 x C y decompPMat n = i N , j N coe 1 i x C y j n
74 29 73 sylan N Fin R Ring x B y B n 0 x C y decompPMat n = i N , j N coe 1 i x C y j n
75 74 oveq1d N Fin R Ring x B y B n 0 x C y decompPMat n ˙ n × ˙ X = i N , j N coe 1 i x C y j n ˙ n × ˙ X
76 75 eqeq1d N Fin R Ring x B y B n 0 x C y decompPMat n ˙ n × ˙ X = 0 Q i N , j N coe 1 i x C y j n ˙ n × ˙ X = 0 Q
77 76 imbi2d N Fin R Ring x B y B n 0 s < n x C y decompPMat n ˙ n × ˙ X = 0 Q s < n i N , j N coe 1 i x C y j n ˙ n × ˙ X = 0 Q
78 77 ralbidva N Fin R Ring x B y B n 0 s < n x C y decompPMat n ˙ n × ˙ X = 0 Q n 0 s < n i N , j N coe 1 i x C y j n ˙ n × ˙ X = 0 Q
79 78 rexbidv N Fin R Ring x B y B s 0 n 0 s < n x C y decompPMat n ˙ n × ˙ X = 0 Q s 0 n 0 s < n i N , j N coe 1 i x C y j n ˙ n × ˙ X = 0 Q
80 72 79 mpbird N Fin R Ring x B y B s 0 n 0 s < n x C y decompPMat n ˙ n × ˙ X = 0 Q
81 1 2 3 7 decpmatmul R Ring x B y B n 0 x C y decompPMat n = A k = 0 n x decompPMat k A y decompPMat n k
82 81 ad4ant234 N Fin R Ring x B y B n 0 x C y decompPMat n = A k = 0 n x decompPMat k A y decompPMat n k
83 82 eqcomd N Fin R Ring x B y B n 0 A k = 0 n x decompPMat k A y decompPMat n k = x C y decompPMat n
84 83 oveq1d N Fin R Ring x B y B n 0 A k = 0 n x decompPMat k A y decompPMat n k ˙ n × ˙ X = x C y decompPMat n ˙ n × ˙ X
85 84 eqeq1d N Fin R Ring x B y B n 0 A k = 0 n x decompPMat k A y decompPMat n k ˙ n × ˙ X = 0 Q x C y decompPMat n ˙ n × ˙ X = 0 Q
86 85 imbi2d N Fin R Ring x B y B n 0 s < n A k = 0 n x decompPMat k A y decompPMat n k ˙ n × ˙ X = 0 Q s < n x C y decompPMat n ˙ n × ˙ X = 0 Q
87 86 ralbidva N Fin R Ring x B y B n 0 s < n A k = 0 n x decompPMat k A y decompPMat n k ˙ n × ˙ X = 0 Q n 0 s < n x C y decompPMat n ˙ n × ˙ X = 0 Q
88 87 rexbidv N Fin R Ring x B y B s 0 n 0 s < n A k = 0 n x decompPMat k A y decompPMat n k ˙ n × ˙ X = 0 Q s 0 n 0 s < n x C y decompPMat n ˙ n × ˙ X = 0 Q
89 80 88 mpbird N Fin R Ring x B y B s 0 n 0 s < n A k = 0 n x decompPMat k A y decompPMat n k ˙ n × ˙ X = 0 Q
90 11 12 20 89 mptnn0fsuppd N Fin R Ring x B y B finSupp 0 Q l 0 A k = 0 l x decompPMat k A y decompPMat l k ˙ l × ˙ X