Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpfo.p |
|
2 |
|
pm2mpfo.c |
|
3 |
|
pm2mpfo.b |
|
4 |
|
pm2mpfo.m |
|
5 |
|
pm2mpfo.e |
|
6 |
|
pm2mpfo.x |
|
7 |
|
pm2mpfo.a |
|
8 |
|
pm2mpfo.q |
|
9 |
|
pm2mpfo.l |
|
10 |
|
pm2mpfo.t |
|
11 |
|
fvexd |
|
12 |
|
ovexd |
|
13 |
|
oveq2 |
|
14 |
|
oveq1 |
|
15 |
14
|
oveq2d |
|
16 |
15
|
oveq2d |
|
17 |
13 16
|
mpteq12dv |
|
18 |
17
|
oveq2d |
|
19 |
|
oveq1 |
|
20 |
18 19
|
oveq12d |
|
21 |
|
simpll |
|
22 |
|
simplr |
|
23 |
1 2
|
pmatring |
|
24 |
23
|
anim1i |
|
25 |
|
3anass |
|
26 |
24 25
|
sylibr |
|
27 |
|
eqid |
|
28 |
3 27
|
ringcl |
|
29 |
26 28
|
syl |
|
30 |
|
eqid |
|
31 |
1 2 3 30
|
pmatcoe1fsupp |
|
32 |
21 22 29 31
|
syl3anc |
|
33 |
|
fvoveq1 |
|
34 |
33
|
fveq1d |
|
35 |
34
|
eqeq1d |
|
36 |
|
oveq2 |
|
37 |
36
|
fveq2d |
|
38 |
37
|
fveq1d |
|
39 |
38
|
eqeq1d |
|
40 |
35 39
|
rspc2va |
|
41 |
40
|
expcom |
|
42 |
41
|
adantl |
|
43 |
42
|
3impib |
|
44 |
43
|
mpoeq3dva |
|
45 |
7 30
|
mat0op |
|
46 |
45
|
ad3antrrr |
|
47 |
7
|
matring |
|
48 |
8
|
ply1sca |
|
49 |
47 48
|
syl |
|
50 |
49
|
ad3antrrr |
|
51 |
50
|
fveq2d |
|
52 |
44 46 51
|
3eqtr2d |
|
53 |
52
|
oveq1d |
|
54 |
8
|
ply1lmod |
|
55 |
47 54
|
syl |
|
56 |
55
|
adantr |
|
57 |
47
|
adantr |
|
58 |
|
eqid |
|
59 |
8 6 58 5 9
|
ply1moncl |
|
60 |
57 59
|
sylan |
|
61 |
|
eqid |
|
62 |
|
eqid |
|
63 |
|
eqid |
|
64 |
9 61 4 62 63
|
lmod0vs |
|
65 |
56 60 64
|
syl2an2r |
|
66 |
65
|
adantr |
|
67 |
53 66
|
eqtrd |
|
68 |
67
|
ex |
|
69 |
68
|
imim2d |
|
70 |
69
|
ralimdva |
|
71 |
70
|
reximdv |
|
72 |
32 71
|
mpd |
|
73 |
2 3
|
decpmatval |
|
74 |
29 73
|
sylan |
|
75 |
74
|
oveq1d |
|
76 |
75
|
eqeq1d |
|
77 |
76
|
imbi2d |
|
78 |
77
|
ralbidva |
|
79 |
78
|
rexbidv |
|
80 |
72 79
|
mpbird |
|
81 |
1 2 3 7
|
decpmatmul |
|
82 |
81
|
ad4ant234 |
|
83 |
82
|
eqcomd |
|
84 |
83
|
oveq1d |
|
85 |
84
|
eqeq1d |
|
86 |
85
|
imbi2d |
|
87 |
86
|
ralbidva |
|
88 |
87
|
rexbidv |
|
89 |
80 88
|
mpbird |
|
90 |
11 12 20 89
|
mptnn0fsuppd |
|