Metamath Proof Explorer


Theorem pm2mprhm

Description: The transformation of polynomial matrices into polynomials over matrices is a ring homomorphism. (Contributed by AV, 22-Oct-2019)

Ref Expression
Hypotheses pm2mpmhm.p P = Poly 1 R
pm2mpmhm.c C = N Mat P
pm2mpmhm.a A = N Mat R
pm2mpmhm.q Q = Poly 1 A
pm2mpmhm.t T = N pMatToMatPoly R
Assertion pm2mprhm N Fin R Ring T C RingHom Q

Proof

Step Hyp Ref Expression
1 pm2mpmhm.p P = Poly 1 R
2 pm2mpmhm.c C = N Mat P
3 pm2mpmhm.a A = N Mat R
4 pm2mpmhm.q Q = Poly 1 A
5 pm2mpmhm.t T = N pMatToMatPoly R
6 1 2 pmatring N Fin R Ring C Ring
7 3 matring N Fin R Ring A Ring
8 4 ply1ring A Ring Q Ring
9 7 8 syl N Fin R Ring Q Ring
10 eqid Base C = Base C
11 eqid Q = Q
12 eqid mulGrp Q = mulGrp Q
13 eqid var 1 A = var 1 A
14 eqid Base Q = Base Q
15 1 2 10 11 12 13 3 4 14 5 pm2mpghm N Fin R Ring T C GrpHom Q
16 1 2 3 4 5 pm2mpmhm N Fin R Ring T mulGrp C MndHom mulGrp Q
17 15 16 jca N Fin R Ring T C GrpHom Q T mulGrp C MndHom mulGrp Q
18 eqid mulGrp C = mulGrp C
19 eqid mulGrp Q = mulGrp Q
20 18 19 isrhm T C RingHom Q C Ring Q Ring T C GrpHom Q T mulGrp C MndHom mulGrp Q
21 6 9 17 20 syl21anbrc N Fin R Ring T C RingHom Q