Metamath Proof Explorer


Theorem pm4.14

Description: Theorem *4.14 of WhiteheadRussell p. 117. Related to con34b . (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 23-Oct-2012)

Ref Expression
Assertion pm4.14 φ ψ χ φ ¬ χ ¬ ψ

Proof

Step Hyp Ref Expression
1 con34b ψ χ ¬ χ ¬ ψ
2 1 imbi2i φ ψ χ φ ¬ χ ¬ ψ
3 impexp φ ψ χ φ ψ χ
4 impexp φ ¬ χ ¬ ψ φ ¬ χ ¬ ψ
5 2 3 4 3bitr4i φ ψ χ φ ¬ χ ¬ ψ