Metamath Proof Explorer


Theorem pm5.16

Description: Theorem *5.16 of WhiteheadRussell p. 124. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 17-Oct-2013)

Ref Expression
Assertion pm5.16 ¬ φ ψ φ ¬ ψ

Proof

Step Hyp Ref Expression
1 pm5.18 φ ψ ¬ φ ¬ ψ
2 1 biimpi φ ψ ¬ φ ¬ ψ
3 imnan φ ψ ¬ φ ¬ ψ ¬ φ ψ φ ¬ ψ
4 2 3 mpbi ¬ φ ψ φ ¬ ψ