Metamath Proof Explorer


Theorem pm5.17

Description: Theorem *5.17 of WhiteheadRussell p. 124. (Contributed by NM, 3-Jan-2005) (Proof shortened by Wolf Lammen, 3-Jan-2013)

Ref Expression
Assertion pm5.17 φ ψ ¬ φ ψ φ ¬ ψ

Proof

Step Hyp Ref Expression
1 bicom φ ¬ ψ ¬ ψ φ
2 dfbi2 ¬ ψ φ ¬ ψ φ φ ¬ ψ
3 orcom φ ψ ψ φ
4 df-or ψ φ ¬ ψ φ
5 3 4 bitr2i ¬ ψ φ φ ψ
6 imnan φ ¬ ψ ¬ φ ψ
7 5 6 anbi12i ¬ ψ φ φ ¬ ψ φ ψ ¬ φ ψ
8 1 2 7 3bitrri φ ψ ¬ φ ψ φ ¬ ψ