Metamath Proof Explorer


Theorem pm5.21ni

Description: Two propositions implying a false one are equivalent. (Contributed by NM, 16-Feb-1996) (Proof shortened by Wolf Lammen, 19-May-2013)

Ref Expression
Hypotheses pm5.21ni.1 φ ψ
pm5.21ni.2 χ ψ
Assertion pm5.21ni ¬ ψ φ χ

Proof

Step Hyp Ref Expression
1 pm5.21ni.1 φ ψ
2 pm5.21ni.2 χ ψ
3 1 con3i ¬ ψ ¬ φ
4 2 con3i ¬ ψ ¬ χ
5 3 4 2falsed ¬ ψ φ χ