Metamath Proof Explorer


Theorem pm5.32

Description: Distribution of implication over biconditional. Theorem *5.32 of WhiteheadRussell p. 125. (Contributed by NM, 1-Aug-1994)

Ref Expression
Assertion pm5.32 φ ψ χ φ ψ φ χ

Proof

Step Hyp Ref Expression
1 notbi ψ χ ¬ ψ ¬ χ
2 1 imbi2i φ ψ χ φ ¬ ψ ¬ χ
3 pm5.74 φ ¬ ψ ¬ χ φ ¬ ψ φ ¬ χ
4 notbi φ ¬ ψ φ ¬ χ ¬ φ ¬ ψ ¬ φ ¬ χ
5 2 3 4 3bitri φ ψ χ ¬ φ ¬ ψ ¬ φ ¬ χ
6 df-an φ ψ ¬ φ ¬ ψ
7 df-an φ χ ¬ φ ¬ χ
8 6 7 bibi12i φ ψ φ χ ¬ φ ¬ ψ ¬ φ ¬ χ
9 5 8 bitr4i φ ψ χ φ ψ φ χ