Metamath Proof Explorer


Theorem pm5.75

Description: Theorem *5.75 of WhiteheadRussell p. 126. (Contributed by NM, 3-Jan-2005) (Proof shortened by Andrew Salmon, 7-May-2011) (Proof shortened by Wolf Lammen, 23-Dec-2012) (Proof shortened by Kyle Wyonch, 12-Feb-2021)

Ref Expression
Assertion pm5.75 χ ¬ ψ φ ψ χ φ ¬ ψ χ

Proof

Step Hyp Ref Expression
1 anbi1 φ ψ χ φ ¬ ψ ψ χ ¬ ψ
2 biorf ¬ ψ χ ψ χ
3 2 bicomd ¬ ψ ψ χ χ
4 3 pm5.32ri ψ χ ¬ ψ χ ¬ ψ
5 1 4 bitrdi φ ψ χ φ ¬ ψ χ ¬ ψ
6 abai χ ¬ ψ χ χ ¬ ψ
7 6 rbaib χ ¬ ψ χ ¬ ψ χ
8 5 7 sylan9bbr χ ¬ ψ φ ψ χ φ ¬ ψ χ