Metamath Proof Explorer


Theorem pmap0

Description: Value of the projective map of a Hilbert lattice at lattice zero. Part of Theorem 15.5.1 of MaedaMaeda p. 62. (Contributed by NM, 17-Oct-2011)

Ref Expression
Hypotheses pmap0.z 0 ˙ = 0. K
pmap0.m M = pmap K
Assertion pmap0 K AtLat M 0 ˙ =

Proof

Step Hyp Ref Expression
1 pmap0.z 0 ˙ = 0. K
2 pmap0.m M = pmap K
3 eqid Base K = Base K
4 3 1 atl0cl K AtLat 0 ˙ Base K
5 eqid K = K
6 eqid Atoms K = Atoms K
7 3 5 6 2 pmapval K AtLat 0 ˙ Base K M 0 ˙ = a Atoms K | a K 0 ˙
8 4 7 mpdan K AtLat M 0 ˙ = a Atoms K | a K 0 ˙
9 5 1 6 atnle0 K AtLat a Atoms K ¬ a K 0 ˙
10 9 nrexdv K AtLat ¬ a Atoms K a K 0 ˙
11 rabn0 a Atoms K | a K 0 ˙ a Atoms K a K 0 ˙
12 10 11 sylnibr K AtLat ¬ a Atoms K | a K 0 ˙
13 nne ¬ a Atoms K | a K 0 ˙ a Atoms K | a K 0 ˙ =
14 12 13 sylib K AtLat a Atoms K | a K 0 ˙ =
15 8 14 eqtrd K AtLat M 0 ˙ =