Metamath Proof Explorer


Theorem pmap11

Description: The projective map of a Hilbert lattice is one-to-one. Part of Theorem 15.5 of MaedaMaeda p. 62. (Contributed by NM, 22-Oct-2011)

Ref Expression
Hypotheses pmap11.b B = Base K
pmap11.m M = pmap K
Assertion pmap11 K HL X B Y B M X = M Y X = Y

Proof

Step Hyp Ref Expression
1 pmap11.b B = Base K
2 pmap11.m M = pmap K
3 eqss M X = M Y M X M Y M Y M X
4 hllat K HL K Lat
5 eqid K = K
6 1 5 latasymb K Lat X B Y B X K Y Y K X X = Y
7 4 6 syl3an1 K HL X B Y B X K Y Y K X X = Y
8 1 5 2 pmaple K HL X B Y B X K Y M X M Y
9 1 5 2 pmaple K HL Y B X B Y K X M Y M X
10 9 3com23 K HL X B Y B Y K X M Y M X
11 8 10 anbi12d K HL X B Y B X K Y Y K X M X M Y M Y M X
12 7 11 bitr3d K HL X B Y B X = Y M X M Y M Y M X
13 3 12 bitr4id K HL X B Y B M X = M Y X = Y