Metamath Proof Explorer


Theorem pmap1N

Description: Value of the projective map of a Hilbert lattice at lattice unit. Part of Theorem 15.5.1 of MaedaMaeda p. 62. (Contributed by NM, 22-Oct-2011) (New usage is discouraged.)

Ref Expression
Hypotheses pmap1.u 1 ˙ = 1. K
pmap1.a A = Atoms K
pmap1.m M = pmap K
Assertion pmap1N K OP M 1 ˙ = A

Proof

Step Hyp Ref Expression
1 pmap1.u 1 ˙ = 1. K
2 pmap1.a A = Atoms K
3 pmap1.m M = pmap K
4 eqid Base K = Base K
5 4 1 op1cl K OP 1 ˙ Base K
6 eqid K = K
7 4 6 2 3 pmapval K OP 1 ˙ Base K M 1 ˙ = p A | p K 1 ˙
8 5 7 mpdan K OP M 1 ˙ = p A | p K 1 ˙
9 4 2 atbase p A p Base K
10 4 6 1 ople1 K OP p Base K p K 1 ˙
11 9 10 sylan2 K OP p A p K 1 ˙
12 11 ralrimiva K OP p A p K 1 ˙
13 rabid2 A = p A | p K 1 ˙ p A p K 1 ˙
14 12 13 sylibr K OP A = p A | p K 1 ˙
15 8 14 eqtr4d K OP M 1 ˙ = A