Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Projective geometries based on Hilbert lattices
pmapat
Next ⟩
elpmapat
Metamath Proof Explorer
Ascii
Unicode
Theorem
pmapat
Description:
The projective map of an atom.
(Contributed by
NM
, 25-Jan-2012)
Ref
Expression
Hypotheses
pmapat.a
⊢
A
=
Atoms
⁡
K
pmapat.m
⊢
M
=
pmap
⁡
K
Assertion
pmapat
⊢
K
∈
HL
∧
P
∈
A
→
M
⁡
P
=
P
Proof
Step
Hyp
Ref
Expression
1
pmapat.a
⊢
A
=
Atoms
⁡
K
2
pmapat.m
⊢
M
=
pmap
⁡
K
3
eqid
⊢
Base
K
=
Base
K
4
3
1
atbase
⊢
P
∈
A
→
P
∈
Base
K
5
eqid
⊢
≤
K
=
≤
K
6
3
5
1
2
pmapval
⊢
K
∈
HL
∧
P
∈
Base
K
→
M
⁡
P
=
q
∈
A
|
q
≤
K
P
7
4
6
sylan2
⊢
K
∈
HL
∧
P
∈
A
→
M
⁡
P
=
q
∈
A
|
q
≤
K
P
8
hlatl
⊢
K
∈
HL
→
K
∈
AtLat
9
8
ad2antrr
⊢
K
∈
HL
∧
P
∈
A
∧
q
∈
A
→
K
∈
AtLat
10
simpr
⊢
K
∈
HL
∧
P
∈
A
∧
q
∈
A
→
q
∈
A
11
simplr
⊢
K
∈
HL
∧
P
∈
A
∧
q
∈
A
→
P
∈
A
12
5
1
atcmp
⊢
K
∈
AtLat
∧
q
∈
A
∧
P
∈
A
→
q
≤
K
P
↔
q
=
P
13
9
10
11
12
syl3anc
⊢
K
∈
HL
∧
P
∈
A
∧
q
∈
A
→
q
≤
K
P
↔
q
=
P
14
13
rabbidva
⊢
K
∈
HL
∧
P
∈
A
→
q
∈
A
|
q
≤
K
P
=
q
∈
A
|
q
=
P
15
rabsn
⊢
P
∈
A
→
q
∈
A
|
q
=
P
=
P
16
15
adantl
⊢
K
∈
HL
∧
P
∈
A
→
q
∈
A
|
q
=
P
=
P
17
7
14
16
3eqtrd
⊢
K
∈
HL
∧
P
∈
A
→
M
⁡
P
=
P