Metamath Proof Explorer


Theorem pmapat

Description: The projective map of an atom. (Contributed by NM, 25-Jan-2012)

Ref Expression
Hypotheses pmapat.a A = Atoms K
pmapat.m M = pmap K
Assertion pmapat K HL P A M P = P

Proof

Step Hyp Ref Expression
1 pmapat.a A = Atoms K
2 pmapat.m M = pmap K
3 eqid Base K = Base K
4 3 1 atbase P A P Base K
5 eqid K = K
6 3 5 1 2 pmapval K HL P Base K M P = q A | q K P
7 4 6 sylan2 K HL P A M P = q A | q K P
8 hlatl K HL K AtLat
9 8 ad2antrr K HL P A q A K AtLat
10 simpr K HL P A q A q A
11 simplr K HL P A q A P A
12 5 1 atcmp K AtLat q A P A q K P q = P
13 9 10 11 12 syl3anc K HL P A q A q K P q = P
14 13 rabbidva K HL P A q A | q K P = q A | q = P
15 rabsn P A q A | q = P = P
16 15 adantl K HL P A q A | q = P = P
17 7 14 16 3eqtrd K HL P A M P = P