Metamath Proof Explorer


Theorem pmapeq0

Description: A projective map value is zero iff its argument is lattice zero. (Contributed by NM, 27-Jan-2012)

Ref Expression
Hypotheses pmapeq0.b B = Base K
pmapeq0.z 0 ˙ = 0. K
pmapeq0.m M = pmap K
Assertion pmapeq0 K HL X B M X = X = 0 ˙

Proof

Step Hyp Ref Expression
1 pmapeq0.b B = Base K
2 pmapeq0.z 0 ˙ = 0. K
3 pmapeq0.m M = pmap K
4 hlatl K HL K AtLat
5 4 adantr K HL X B K AtLat
6 2 3 pmap0 K AtLat M 0 ˙ =
7 5 6 syl K HL X B M 0 ˙ =
8 7 eqeq2d K HL X B M X = M 0 ˙ M X =
9 hlop K HL K OP
10 9 adantr K HL X B K OP
11 1 2 op0cl K OP 0 ˙ B
12 10 11 syl K HL X B 0 ˙ B
13 1 3 pmap11 K HL X B 0 ˙ B M X = M 0 ˙ X = 0 ˙
14 12 13 mpd3an3 K HL X B M X = M 0 ˙ X = 0 ˙
15 8 14 bitr3d K HL X B M X = X = 0 ˙