Metamath Proof Explorer


Theorem pmapglb2N

Description: The projective map of the GLB of a set of lattice elements S . Variant of Theorem 15.5.2 of MaedaMaeda p. 62. Allows S = (/) . (Contributed by NM, 21-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pmapglb2.b B = Base K
pmapglb2.g G = glb K
pmapglb2.a A = Atoms K
pmapglb2.m M = pmap K
Assertion pmapglb2N K HL S B M G S = A x S M x

Proof

Step Hyp Ref Expression
1 pmapglb2.b B = Base K
2 pmapglb2.g G = glb K
3 pmapglb2.a A = Atoms K
4 pmapglb2.m M = pmap K
5 hlop K HL K OP
6 eqid 1. K = 1. K
7 2 6 glb0N K OP G = 1. K
8 7 fveq2d K OP M G = M 1. K
9 6 3 4 pmap1N K OP M 1. K = A
10 8 9 eqtrd K OP M G = A
11 5 10 syl K HL M G = A
12 2fveq3 S = M G S = M G
13 riin0 S = A x S M x = A
14 12 13 eqeq12d S = M G S = A x S M x M G = A
15 11 14 syl5ibrcom K HL S = M G S = A x S M x
16 15 adantr K HL S B S = M G S = A x S M x
17 1 2 4 pmapglb K HL S B S M G S = x S M x
18 simpr K HL S B x S x S
19 simpll K HL S B x S K HL
20 ssel2 S B x S x B
21 20 adantll K HL S B x S x B
22 1 3 4 pmapssat K HL x B M x A
23 19 21 22 syl2anc K HL S B x S M x A
24 18 23 jca K HL S B x S x S M x A
25 24 ex K HL S B x S x S M x A
26 25 eximdv K HL S B x x S x x S M x A
27 n0 S x x S
28 df-rex x S M x A x x S M x A
29 26 27 28 3imtr4g K HL S B S x S M x A
30 29 3impia K HL S B S x S M x A
31 iinss x S M x A x S M x A
32 30 31 syl K HL S B S x S M x A
33 sseqin2 x S M x A A x S M x = x S M x
34 32 33 sylib K HL S B S A x S M x = x S M x
35 17 34 eqtr4d K HL S B S M G S = A x S M x
36 35 3expia K HL S B S M G S = A x S M x
37 16 36 pm2.61dne K HL S B M G S = A x S M x