Metamath Proof Explorer


Theorem pmapglbx

Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb , where we read S as S ( i ) . Theorem 15.5.2 of MaedaMaeda p. 62. (Contributed by NM, 5-Dec-2011)

Ref Expression
Hypotheses pmapglb.b B = Base K
pmapglb.g G = glb K
pmapglb.m M = pmap K
Assertion pmapglbx K HL i I S B I M G y | i I y = S = i I M S

Proof

Step Hyp Ref Expression
1 pmapglb.b B = Base K
2 pmapglb.g G = glb K
3 pmapglb.m M = pmap K
4 hlclat K HL K CLat
5 4 ad2antrr K HL i I S B p Atoms K K CLat
6 eqid Atoms K = Atoms K
7 1 6 atbase p Atoms K p B
8 7 adantl K HL i I S B p Atoms K p B
9 r19.29 i I S B i I y = S i I S B y = S
10 eleq1a S B y = S y B
11 10 imp S B y = S y B
12 11 rexlimivw i I S B y = S y B
13 9 12 syl i I S B i I y = S y B
14 13 ex i I S B i I y = S y B
15 14 ad2antlr K HL i I S B p Atoms K i I y = S y B
16 15 abssdv K HL i I S B p Atoms K y | i I y = S B
17 eqid K = K
18 1 17 2 clatleglb K CLat p B y | i I y = S B p K G y | i I y = S z y | i I y = S p K z
19 5 8 16 18 syl3anc K HL i I S B p Atoms K p K G y | i I y = S z y | i I y = S p K z
20 vex z V
21 eqeq1 y = z y = S z = S
22 21 rexbidv y = z i I y = S i I z = S
23 20 22 elab z y | i I y = S i I z = S
24 23 imbi1i z y | i I y = S p K z i I z = S p K z
25 r19.23v i I z = S p K z i I z = S p K z
26 24 25 bitr4i z y | i I y = S p K z i I z = S p K z
27 26 albii z z y | i I y = S p K z z i I z = S p K z
28 df-ral z y | i I y = S p K z z z y | i I y = S p K z
29 ralcom4 i I z z = S p K z z i I z = S p K z
30 27 28 29 3bitr4i z y | i I y = S p K z i I z z = S p K z
31 nfv z p K S
32 breq2 z = S p K z p K S
33 31 32 ceqsalg S B z z = S p K z p K S
34 33 ralimi i I S B i I z z = S p K z p K S
35 ralbi i I z z = S p K z p K S i I z z = S p K z i I p K S
36 34 35 syl i I S B i I z z = S p K z i I p K S
37 30 36 syl5bb i I S B z y | i I y = S p K z i I p K S
38 37 ad2antlr K HL i I S B p Atoms K z y | i I y = S p K z i I p K S
39 19 38 bitrd K HL i I S B p Atoms K p K G y | i I y = S i I p K S
40 39 rabbidva K HL i I S B p Atoms K | p K G y | i I y = S = p Atoms K | i I p K S
41 40 3adant3 K HL i I S B I p Atoms K | p K G y | i I y = S = p Atoms K | i I p K S
42 simp1 K HL i I S B I K HL
43 14 abssdv i I S B y | i I y = S B
44 1 2 clatglbcl K CLat y | i I y = S B G y | i I y = S B
45 4 43 44 syl2an K HL i I S B G y | i I y = S B
46 45 3adant3 K HL i I S B I G y | i I y = S B
47 1 17 6 3 pmapval K HL G y | i I y = S B M G y | i I y = S = p Atoms K | p K G y | i I y = S
48 42 46 47 syl2anc K HL i I S B I M G y | i I y = S = p Atoms K | p K G y | i I y = S
49 iinrab I i I p Atoms K | p K S = p Atoms K | i I p K S
50 49 3ad2ant3 K HL i I S B I i I p Atoms K | p K S = p Atoms K | i I p K S
51 41 48 50 3eqtr4d K HL i I S B I M G y | i I y = S = i I p Atoms K | p K S
52 nfv i K HL
53 nfra1 i i I S B
54 nfv i I
55 52 53 54 nf3an i K HL i I S B I
56 simpl1 K HL i I S B I i I K HL
57 rspa i I S B i I S B
58 57 3ad2antl2 K HL i I S B I i I S B
59 1 17 6 3 pmapval K HL S B M S = p Atoms K | p K S
60 56 58 59 syl2anc K HL i I S B I i I M S = p Atoms K | p K S
61 55 60 iineq2d K HL i I S B I i I M S = i I p Atoms K | p K S
62 51 61 eqtr4d K HL i I S B I M G y | i I y = S = i I M S