Metamath Proof Explorer


Theorem pmapjat1

Description: The projective map of the join of a lattice element and an atom. (Contributed by NM, 28-Jan-2012)

Ref Expression
Hypotheses pmapjat.b B = Base K
pmapjat.j ˙ = join K
pmapjat.a A = Atoms K
pmapjat.m M = pmap K
pmapjat.p + ˙ = + 𝑃 K
Assertion pmapjat1 K HL X B Q A M X ˙ Q = M X + ˙ M Q

Proof

Step Hyp Ref Expression
1 pmapjat.b B = Base K
2 pmapjat.j ˙ = join K
3 pmapjat.a A = Atoms K
4 pmapjat.m M = pmap K
5 pmapjat.p + ˙ = + 𝑃 K
6 simp1 K HL X B Q A K HL
7 1 3 atbase Q A Q B
8 7 3ad2ant3 K HL X B Q A Q B
9 1 3 4 pmapssat K HL Q B M Q A
10 6 8 9 syl2anc K HL X B Q A M Q A
11 3 5 padd02 K HL M Q A + ˙ M Q = M Q
12 6 10 11 syl2anc K HL X B Q A + ˙ M Q = M Q
13 12 adantr K HL X B Q A X = 0. K + ˙ M Q = M Q
14 fveq2 X = 0. K M X = M 0. K
15 hlatl K HL K AtLat
16 15 3ad2ant1 K HL X B Q A K AtLat
17 eqid 0. K = 0. K
18 17 4 pmap0 K AtLat M 0. K =
19 16 18 syl K HL X B Q A M 0. K =
20 14 19 sylan9eqr K HL X B Q A X = 0. K M X =
21 20 oveq1d K HL X B Q A X = 0. K M X + ˙ M Q = + ˙ M Q
22 oveq1 X = 0. K X ˙ Q = 0. K ˙ Q
23 hlol K HL K OL
24 23 3ad2ant1 K HL X B Q A K OL
25 1 2 17 olj02 K OL Q B 0. K ˙ Q = Q
26 24 8 25 syl2anc K HL X B Q A 0. K ˙ Q = Q
27 22 26 sylan9eqr K HL X B Q A X = 0. K X ˙ Q = Q
28 27 fveq2d K HL X B Q A X = 0. K M X ˙ Q = M Q
29 13 21 28 3eqtr4rd K HL X B Q A X = 0. K M X ˙ Q = M X + ˙ M Q
30 simpll1 K HL X B Q A X 0. K p A K HL
31 30 adantr K HL X B Q A X 0. K p A p K X ˙ Q K HL
32 simpll2 K HL X B Q A X 0. K p A X B
33 32 adantr K HL X B Q A X 0. K p A p K X ˙ Q X B
34 simplr K HL X B Q A X 0. K p A p K X ˙ Q p A
35 simpll3 K HL X B Q A X 0. K p A Q A
36 35 adantr K HL X B Q A X 0. K p A p K X ˙ Q Q A
37 33 34 36 3jca K HL X B Q A X 0. K p A p K X ˙ Q X B p A Q A
38 simpllr K HL X B Q A X 0. K p A p K X ˙ Q X 0. K
39 simpr K HL X B Q A X 0. K p A p K X ˙ Q p K X ˙ Q
40 eqid K = K
41 1 40 2 17 3 cvrat42 K HL X B p A Q A X 0. K p K X ˙ Q q A q K X p K q ˙ Q
42 41 imp K HL X B p A Q A X 0. K p K X ˙ Q q A q K X p K q ˙ Q
43 31 37 38 39 42 syl22anc K HL X B Q A X 0. K p A p K X ˙ Q q A q K X p K q ˙ Q
44 43 ex K HL X B Q A X 0. K p A p K X ˙ Q q A q K X p K q ˙ Q
45 1 40 3 4 elpmap K HL X B q M X q A q K X
46 45 3adant3 K HL X B Q A q M X q A q K X
47 df-rex r M Q p K q ˙ r r r M Q p K q ˙ r
48 3 4 elpmapat K HL Q A r M Q r = Q
49 48 3adant2 K HL X B Q A r M Q r = Q
50 49 anbi1d K HL X B Q A r M Q p K q ˙ r r = Q p K q ˙ r
51 50 exbidv K HL X B Q A r r M Q p K q ˙ r r r = Q p K q ˙ r
52 47 51 bitr2id K HL X B Q A r r = Q p K q ˙ r r M Q p K q ˙ r
53 oveq2 r = Q q ˙ r = q ˙ Q
54 53 breq2d r = Q p K q ˙ r p K q ˙ Q
55 54 ceqsexgv Q A r r = Q p K q ˙ r p K q ˙ Q
56 55 3ad2ant3 K HL X B Q A r r = Q p K q ˙ r p K q ˙ Q
57 52 56 bitr3d K HL X B Q A r M Q p K q ˙ r p K q ˙ Q
58 46 57 anbi12d K HL X B Q A q M X r M Q p K q ˙ r q A q K X p K q ˙ Q
59 anass q A q K X p K q ˙ Q q A q K X p K q ˙ Q
60 58 59 bitrdi K HL X B Q A q M X r M Q p K q ˙ r q A q K X p K q ˙ Q
61 60 rexbidv2 K HL X B Q A q M X r M Q p K q ˙ r q A q K X p K q ˙ Q
62 61 ad2antrr K HL X B Q A X 0. K p A q M X r M Q p K q ˙ r q A q K X p K q ˙ Q
63 44 62 sylibrd K HL X B Q A X 0. K p A p K X ˙ Q q M X r M Q p K q ˙ r
64 63 imdistanda K HL X B Q A X 0. K p A p K X ˙ Q p A q M X r M Q p K q ˙ r
65 hllat K HL K Lat
66 65 3ad2ant1 K HL X B Q A K Lat
67 simp2 K HL X B Q A X B
68 1 2 latjcl K Lat X B Q B X ˙ Q B
69 66 67 8 68 syl3anc K HL X B Q A X ˙ Q B
70 1 40 3 4 elpmap K HL X ˙ Q B p M X ˙ Q p A p K X ˙ Q
71 6 69 70 syl2anc K HL X B Q A p M X ˙ Q p A p K X ˙ Q
72 71 adantr K HL X B Q A X 0. K p M X ˙ Q p A p K X ˙ Q
73 1 3 4 pmapssat K HL X B M X A
74 73 3adant3 K HL X B Q A M X A
75 66 74 10 3jca K HL X B Q A K Lat M X A M Q A
76 75 adantr K HL X B Q A X 0. K K Lat M X A M Q A
77 1 17 4 pmapeq0 K HL X B M X = X = 0. K
78 77 3adant3 K HL X B Q A M X = X = 0. K
79 78 necon3bid K HL X B Q A M X X 0. K
80 79 biimpar K HL X B Q A X 0. K M X
81 simp3 K HL X B Q A Q A
82 17 3 atn0 K AtLat Q A Q 0. K
83 16 81 82 syl2anc K HL X B Q A Q 0. K
84 1 17 4 pmapeq0 K HL Q B M Q = Q = 0. K
85 6 8 84 syl2anc K HL X B Q A M Q = Q = 0. K
86 85 necon3bid K HL X B Q A M Q Q 0. K
87 83 86 mpbird K HL X B Q A M Q
88 87 adantr K HL X B Q A X 0. K M Q
89 40 2 3 5 elpaddn0 K Lat M X A M Q A M X M Q p M X + ˙ M Q p A q M X r M Q p K q ˙ r
90 76 80 88 89 syl12anc K HL X B Q A X 0. K p M X + ˙ M Q p A q M X r M Q p K q ˙ r
91 64 72 90 3imtr4d K HL X B Q A X 0. K p M X ˙ Q p M X + ˙ M Q
92 91 ssrdv K HL X B Q A X 0. K M X ˙ Q M X + ˙ M Q
93 1 2 4 5 pmapjoin K Lat X B Q B M X + ˙ M Q M X ˙ Q
94 66 67 8 93 syl3anc K HL X B Q A M X + ˙ M Q M X ˙ Q
95 94 adantr K HL X B Q A X 0. K M X + ˙ M Q M X ˙ Q
96 92 95 eqssd K HL X B Q A X 0. K M X ˙ Q = M X + ˙ M Q
97 29 96 pm2.61dane K HL X B Q A M X ˙ Q = M X + ˙ M Q