Step |
Hyp |
Ref |
Expression |
1 |
|
pmapjat.b |
|
2 |
|
pmapjat.j |
|
3 |
|
pmapjat.a |
|
4 |
|
pmapjat.m |
|
5 |
|
pmapjat.p |
|
6 |
|
simp1 |
|
7 |
1 3
|
atbase |
|
8 |
7
|
3ad2ant3 |
|
9 |
1 3 4
|
pmapssat |
|
10 |
6 8 9
|
syl2anc |
|
11 |
3 5
|
padd02 |
|
12 |
6 10 11
|
syl2anc |
|
13 |
12
|
adantr |
|
14 |
|
fveq2 |
|
15 |
|
hlatl |
|
16 |
15
|
3ad2ant1 |
|
17 |
|
eqid |
|
18 |
17 4
|
pmap0 |
|
19 |
16 18
|
syl |
|
20 |
14 19
|
sylan9eqr |
|
21 |
20
|
oveq1d |
|
22 |
|
oveq1 |
|
23 |
|
hlol |
|
24 |
23
|
3ad2ant1 |
|
25 |
1 2 17
|
olj02 |
|
26 |
24 8 25
|
syl2anc |
|
27 |
22 26
|
sylan9eqr |
|
28 |
27
|
fveq2d |
|
29 |
13 21 28
|
3eqtr4rd |
|
30 |
|
simpll1 |
|
31 |
30
|
adantr |
|
32 |
|
simpll2 |
|
33 |
32
|
adantr |
|
34 |
|
simplr |
|
35 |
|
simpll3 |
|
36 |
35
|
adantr |
|
37 |
33 34 36
|
3jca |
|
38 |
|
simpllr |
|
39 |
|
simpr |
|
40 |
|
eqid |
|
41 |
1 40 2 17 3
|
cvrat42 |
|
42 |
41
|
imp |
|
43 |
31 37 38 39 42
|
syl22anc |
|
44 |
43
|
ex |
|
45 |
1 40 3 4
|
elpmap |
|
46 |
45
|
3adant3 |
|
47 |
|
df-rex |
|
48 |
3 4
|
elpmapat |
|
49 |
48
|
3adant2 |
|
50 |
49
|
anbi1d |
|
51 |
50
|
exbidv |
|
52 |
47 51
|
bitr2id |
|
53 |
|
oveq2 |
|
54 |
53
|
breq2d |
|
55 |
54
|
ceqsexgv |
|
56 |
55
|
3ad2ant3 |
|
57 |
52 56
|
bitr3d |
|
58 |
46 57
|
anbi12d |
|
59 |
|
anass |
|
60 |
58 59
|
bitrdi |
|
61 |
60
|
rexbidv2 |
|
62 |
61
|
ad2antrr |
|
63 |
44 62
|
sylibrd |
|
64 |
63
|
imdistanda |
|
65 |
|
hllat |
|
66 |
65
|
3ad2ant1 |
|
67 |
|
simp2 |
|
68 |
1 2
|
latjcl |
|
69 |
66 67 8 68
|
syl3anc |
|
70 |
1 40 3 4
|
elpmap |
|
71 |
6 69 70
|
syl2anc |
|
72 |
71
|
adantr |
|
73 |
1 3 4
|
pmapssat |
|
74 |
73
|
3adant3 |
|
75 |
66 74 10
|
3jca |
|
76 |
75
|
adantr |
|
77 |
1 17 4
|
pmapeq0 |
|
78 |
77
|
3adant3 |
|
79 |
78
|
necon3bid |
|
80 |
79
|
biimpar |
|
81 |
|
simp3 |
|
82 |
17 3
|
atn0 |
|
83 |
16 81 82
|
syl2anc |
|
84 |
1 17 4
|
pmapeq0 |
|
85 |
6 8 84
|
syl2anc |
|
86 |
85
|
necon3bid |
|
87 |
83 86
|
mpbird |
|
88 |
87
|
adantr |
|
89 |
40 2 3 5
|
elpaddn0 |
|
90 |
76 80 88 89
|
syl12anc |
|
91 |
64 72 90
|
3imtr4d |
|
92 |
91
|
ssrdv |
|
93 |
1 2 4 5
|
pmapjoin |
|
94 |
66 67 8 93
|
syl3anc |
|
95 |
94
|
adantr |
|
96 |
92 95
|
eqssd |
|
97 |
29 96
|
pm2.61dane |
|