Metamath Proof Explorer


Theorem pmapjat2

Description: The projective map of the join of an atom with a lattice element. (Contributed by NM, 12-May-2012)

Ref Expression
Hypotheses pmapjat.b B = Base K
pmapjat.j ˙ = join K
pmapjat.a A = Atoms K
pmapjat.m M = pmap K
pmapjat.p + ˙ = + 𝑃 K
Assertion pmapjat2 K HL X B Q A M Q ˙ X = M Q + ˙ M X

Proof

Step Hyp Ref Expression
1 pmapjat.b B = Base K
2 pmapjat.j ˙ = join K
3 pmapjat.a A = Atoms K
4 pmapjat.m M = pmap K
5 pmapjat.p + ˙ = + 𝑃 K
6 1 2 3 4 5 pmapjat1 K HL X B Q A M X ˙ Q = M X + ˙ M Q
7 hllat K HL K Lat
8 7 3ad2ant1 K HL X B Q A K Lat
9 1 3 atbase Q A Q B
10 9 3ad2ant3 K HL X B Q A Q B
11 simp2 K HL X B Q A X B
12 1 2 latjcom K Lat Q B X B Q ˙ X = X ˙ Q
13 8 10 11 12 syl3anc K HL X B Q A Q ˙ X = X ˙ Q
14 13 fveq2d K HL X B Q A M Q ˙ X = M X ˙ Q
15 simp1 K HL X B Q A K HL
16 1 3 4 pmapssat K HL Q B M Q A
17 15 10 16 syl2anc K HL X B Q A M Q A
18 1 3 4 pmapssat K HL X B M X A
19 18 3adant3 K HL X B Q A M X A
20 3 5 paddcom K Lat M Q A M X A M Q + ˙ M X = M X + ˙ M Q
21 8 17 19 20 syl3anc K HL X B Q A M Q + ˙ M X = M X + ˙ M Q
22 6 14 21 3eqtr4d K HL X B Q A M Q ˙ X = M Q + ˙ M X