Metamath Proof Explorer


Theorem pmapjlln1

Description: The projective map of the join of a lattice element and a lattice line (expressed as the join Q .\/ R of two atoms). (Contributed by NM, 16-Sep-2012)

Ref Expression
Hypotheses pmapjat.b B = Base K
pmapjat.j ˙ = join K
pmapjat.a A = Atoms K
pmapjat.m M = pmap K
pmapjat.p + ˙ = + 𝑃 K
Assertion pmapjlln1 K HL X B Q A R A M X ˙ Q ˙ R = M X + ˙ M Q ˙ R

Proof

Step Hyp Ref Expression
1 pmapjat.b B = Base K
2 pmapjat.j ˙ = join K
3 pmapjat.a A = Atoms K
4 pmapjat.m M = pmap K
5 pmapjat.p + ˙ = + 𝑃 K
6 simpl K HL X B Q A R A K HL
7 1 3 4 pmapssat K HL X B M X A
8 7 3ad2antr1 K HL X B Q A R A M X A
9 simpr2 K HL X B Q A R A Q A
10 1 3 atbase Q A Q B
11 9 10 syl K HL X B Q A R A Q B
12 1 3 4 pmapssat K HL Q B M Q A
13 11 12 syldan K HL X B Q A R A M Q A
14 simpr3 K HL X B Q A R A R A
15 1 3 atbase R A R B
16 14 15 syl K HL X B Q A R A R B
17 1 3 4 pmapssat K HL R B M R A
18 16 17 syldan K HL X B Q A R A M R A
19 3 5 paddass K HL M X A M Q A M R A M X + ˙ M Q + ˙ M R = M X + ˙ M Q + ˙ M R
20 6 8 13 18 19 syl13anc K HL X B Q A R A M X + ˙ M Q + ˙ M R = M X + ˙ M Q + ˙ M R
21 hllat K HL K Lat
22 21 adantr K HL X B Q A R A K Lat
23 simpr1 K HL X B Q A R A X B
24 1 2 latjcl K Lat X B Q B X ˙ Q B
25 22 23 11 24 syl3anc K HL X B Q A R A X ˙ Q B
26 1 2 3 4 5 pmapjat1 K HL X ˙ Q B R A M X ˙ Q ˙ R = M X ˙ Q + ˙ M R
27 6 25 14 26 syl3anc K HL X B Q A R A M X ˙ Q ˙ R = M X ˙ Q + ˙ M R
28 1 2 latjass K Lat X B Q B R B X ˙ Q ˙ R = X ˙ Q ˙ R
29 22 23 11 16 28 syl13anc K HL X B Q A R A X ˙ Q ˙ R = X ˙ Q ˙ R
30 29 fveq2d K HL X B Q A R A M X ˙ Q ˙ R = M X ˙ Q ˙ R
31 1 2 3 4 5 pmapjat1 K HL X B Q A M X ˙ Q = M X + ˙ M Q
32 31 3adant3r3 K HL X B Q A R A M X ˙ Q = M X + ˙ M Q
33 32 oveq1d K HL X B Q A R A M X ˙ Q + ˙ M R = M X + ˙ M Q + ˙ M R
34 27 30 33 3eqtr3d K HL X B Q A R A M X ˙ Q ˙ R = M X + ˙ M Q + ˙ M R
35 1 2 3 4 5 pmapjat1 K HL Q B R A M Q ˙ R = M Q + ˙ M R
36 6 11 14 35 syl3anc K HL X B Q A R A M Q ˙ R = M Q + ˙ M R
37 36 oveq2d K HL X B Q A R A M X + ˙ M Q ˙ R = M X + ˙ M Q + ˙ M R
38 20 34 37 3eqtr4d K HL X B Q A R A M X ˙ Q ˙ R = M X + ˙ M Q ˙ R