Step |
Hyp |
Ref |
Expression |
1 |
|
pmapjoin.b |
|
2 |
|
pmapjoin.j |
|
3 |
|
pmapjoin.m |
|
4 |
|
pmapjoin.p |
|
5 |
|
simpl |
|
6 |
5
|
a1i |
|
7 |
|
eqid |
|
8 |
1 7
|
atbase |
|
9 |
|
eqid |
|
10 |
1 9 2
|
latlej1 |
|
11 |
10
|
adantr |
|
12 |
|
simpl1 |
|
13 |
|
simpr |
|
14 |
|
simpl2 |
|
15 |
1 2
|
latjcl |
|
16 |
15
|
adantr |
|
17 |
1 9
|
lattr |
|
18 |
12 13 14 16 17
|
syl13anc |
|
19 |
11 18
|
mpan2d |
|
20 |
19
|
expimpd |
|
21 |
8 20
|
sylani |
|
22 |
6 21
|
jcad |
|
23 |
|
simpl |
|
24 |
23
|
a1i |
|
25 |
1 9 2
|
latlej2 |
|
26 |
25
|
adantr |
|
27 |
|
simpl3 |
|
28 |
1 9
|
lattr |
|
29 |
12 13 27 16 28
|
syl13anc |
|
30 |
26 29
|
mpan2d |
|
31 |
30
|
expimpd |
|
32 |
8 31
|
sylani |
|
33 |
24 32
|
jcad |
|
34 |
22 33
|
jaod |
|
35 |
|
simpl |
|
36 |
35
|
a1i |
|
37 |
1 9 7 3
|
elpmap |
|
38 |
37
|
3adant3 |
|
39 |
1 9 7 3
|
elpmap |
|
40 |
39
|
3adant2 |
|
41 |
38 40
|
anbi12d |
|
42 |
|
an4 |
|
43 |
41 42
|
bitrdi |
|
44 |
43
|
adantr |
|
45 |
1 7
|
atbase |
|
46 |
1 7
|
atbase |
|
47 |
45 46
|
anim12i |
|
48 |
|
simpll1 |
|
49 |
|
simprl |
|
50 |
|
simpll2 |
|
51 |
|
simprr |
|
52 |
|
simpll3 |
|
53 |
1 9 2
|
latjlej12 |
|
54 |
48 49 50 51 52 53
|
syl122anc |
|
55 |
|
simplr |
|
56 |
1 2
|
latjcl |
|
57 |
48 49 51 56
|
syl3anc |
|
58 |
15
|
ad2antrr |
|
59 |
1 9
|
lattr |
|
60 |
48 55 57 58 59
|
syl13anc |
|
61 |
60
|
expcomd |
|
62 |
54 61
|
syld |
|
63 |
62
|
expimpd |
|
64 |
47 63
|
sylani |
|
65 |
44 64
|
sylbid |
|
66 |
65
|
rexlimdvv |
|
67 |
66
|
expimpd |
|
68 |
8 67
|
sylani |
|
69 |
36 68
|
jcad |
|
70 |
34 69
|
jaod |
|
71 |
|
simp1 |
|
72 |
1 7 3
|
pmapssat |
|
73 |
72
|
3adant3 |
|
74 |
1 7 3
|
pmapssat |
|
75 |
74
|
3adant2 |
|
76 |
9 2 7 4
|
elpadd |
|
77 |
71 73 75 76
|
syl3anc |
|
78 |
1 9 7 3
|
elpmap |
|
79 |
78
|
3adant3 |
|
80 |
1 9 7 3
|
elpmap |
|
81 |
80
|
3adant2 |
|
82 |
79 81
|
orbi12d |
|
83 |
82
|
orbi1d |
|
84 |
77 83
|
bitrd |
|
85 |
1 9 7 3
|
elpmap |
|
86 |
71 15 85
|
syl2anc |
|
87 |
70 84 86
|
3imtr4d |
|
88 |
87
|
ssrdv |
|