Metamath Proof Explorer


Theorem pmaple

Description: The projective map of a Hilbert lattice preserves ordering. Part of Theorem 15.5 of MaedaMaeda p. 62. (Contributed by NM, 22-Oct-2011)

Ref Expression
Hypotheses pmaple.b B=BaseK
pmaple.l ˙=K
pmaple.m M=pmapK
Assertion pmaple KHLXBYBX˙YMXMY

Proof

Step Hyp Ref Expression
1 pmaple.b B=BaseK
2 pmaple.l ˙=K
3 pmaple.m M=pmapK
4 hlpos KHLKPoset
5 eqid AtomsK=AtomsK
6 1 5 atbase pAtomsKpB
7 1 2 postr KPosetpBXBYBp˙XX˙Yp˙Y
8 7 exp4b KPosetpBXBYBp˙XX˙Yp˙Y
9 8 3expd KPosetpBXBYBp˙XX˙Yp˙Y
10 9 com23 KPosetXBpBYBp˙XX˙Yp˙Y
11 10 com34 KPosetXBYBpBp˙XX˙Yp˙Y
12 11 3imp KPosetXBYBpBp˙XX˙Yp˙Y
13 6 12 syl5 KPosetXBYBpAtomsKp˙XX˙Yp˙Y
14 13 com34 KPosetXBYBpAtomsKX˙Yp˙Xp˙Y
15 14 com23 KPosetXBYBX˙YpAtomsKp˙Xp˙Y
16 15 ralrimdv KPosetXBYBX˙YpAtomsKp˙Xp˙Y
17 4 16 syl3an1 KHLXBYBX˙YpAtomsKp˙Xp˙Y
18 ss2rab pAtomsK|p˙XpAtomsK|p˙YpAtomsKp˙Xp˙Y
19 17 18 syl6ibr KHLXBYBX˙YpAtomsK|p˙XpAtomsK|p˙Y
20 hlclat KHLKCLat
21 ssrab2 pAtomsK|p˙YAtomsK
22 1 5 atssbase AtomsKB
23 21 22 sstri pAtomsK|p˙YB
24 eqid lubK=lubK
25 1 2 24 lubss KCLatpAtomsK|p˙YBpAtomsK|p˙XpAtomsK|p˙YlubKpAtomsK|p˙X˙lubKpAtomsK|p˙Y
26 23 25 mp3an2 KCLatpAtomsK|p˙XpAtomsK|p˙YlubKpAtomsK|p˙X˙lubKpAtomsK|p˙Y
27 26 ex KCLatpAtomsK|p˙XpAtomsK|p˙YlubKpAtomsK|p˙X˙lubKpAtomsK|p˙Y
28 20 27 syl KHLpAtomsK|p˙XpAtomsK|p˙YlubKpAtomsK|p˙X˙lubKpAtomsK|p˙Y
29 28 3ad2ant1 KHLXBYBpAtomsK|p˙XpAtomsK|p˙YlubKpAtomsK|p˙X˙lubKpAtomsK|p˙Y
30 hlomcmat KHLKOMLKCLatKAtLat
31 30 3ad2ant1 KHLXBYBKOMLKCLatKAtLat
32 simp2 KHLXBYBXB
33 1 2 24 5 atlatmstc KOMLKCLatKAtLatXBlubKpAtomsK|p˙X=X
34 31 32 33 syl2anc KHLXBYBlubKpAtomsK|p˙X=X
35 simp3 KHLXBYBYB
36 1 2 24 5 atlatmstc KOMLKCLatKAtLatYBlubKpAtomsK|p˙Y=Y
37 31 35 36 syl2anc KHLXBYBlubKpAtomsK|p˙Y=Y
38 34 37 breq12d KHLXBYBlubKpAtomsK|p˙X˙lubKpAtomsK|p˙YX˙Y
39 29 38 sylibd KHLXBYBpAtomsK|p˙XpAtomsK|p˙YX˙Y
40 19 39 impbid KHLXBYBX˙YpAtomsK|p˙XpAtomsK|p˙Y
41 1 2 5 3 pmapval KHLXBMX=pAtomsK|p˙X
42 41 3adant3 KHLXBYBMX=pAtomsK|p˙X
43 1 2 5 3 pmapval KHLYBMY=pAtomsK|p˙Y
44 43 3adant2 KHLXBYBMY=pAtomsK|p˙Y
45 42 44 sseq12d KHLXBYBMXMYpAtomsK|p˙XpAtomsK|p˙Y
46 40 45 bitr4d KHLXBYBX˙YMXMY