Metamath Proof Explorer


Theorem pmapssat

Description: The projective map of a Hilbert lattice is a set of atoms. (Contributed by NM, 14-Jan-2012)

Ref Expression
Hypotheses pmapssat.b B = Base K
pmapssat.a A = Atoms K
pmapssat.m M = pmap K
Assertion pmapssat K C X B M X A

Proof

Step Hyp Ref Expression
1 pmapssat.b B = Base K
2 pmapssat.a A = Atoms K
3 pmapssat.m M = pmap K
4 eqid K = K
5 1 4 2 3 pmapval K C X B M X = p A | p K X
6 ssrab2 p A | p K X A
7 5 6 eqsstrdi K C X B M X A