Metamath Proof Explorer


Theorem pmapssbaN

Description: A weakening of pmapssat to shorten some proofs. (Contributed by NM, 7-Mar-2012) (New usage is discouraged.)

Ref Expression
Hypotheses pmapssba.b B = Base K
pmapssba.m M = pmap K
Assertion pmapssbaN K C X B M X B

Proof

Step Hyp Ref Expression
1 pmapssba.b B = Base K
2 pmapssba.m M = pmap K
3 eqid Atoms K = Atoms K
4 1 3 2 pmapssat K C X B M X Atoms K
5 1 3 atssbase Atoms K B
6 4 5 sstrdi K C X B M X B