Metamath Proof Explorer


Theorem pmapsub

Description: The projective map of a Hilbert lattice maps to projective subspaces. Part of Theorem 15.5 of MaedaMaeda p. 62. (Contributed by NM, 17-Oct-2011)

Ref Expression
Hypotheses pmapsub.b B = Base K
pmapsub.s S = PSubSp K
pmapsub.m M = pmap K
Assertion pmapsub K Lat X B M X S

Proof

Step Hyp Ref Expression
1 pmapsub.b B = Base K
2 pmapsub.s S = PSubSp K
3 pmapsub.m M = pmap K
4 eqid K = K
5 eqid Atoms K = Atoms K
6 1 4 5 3 pmapval K Lat X B M X = c Atoms K | c K X
7 breq1 c = p c K X p K X
8 7 elrab p c Atoms K | c K X p Atoms K p K X
9 1 5 atbase p Atoms K p B
10 9 anim1i p Atoms K p K X p B p K X
11 8 10 sylbi p c Atoms K | c K X p B p K X
12 breq1 c = q c K X q K X
13 12 elrab q c Atoms K | c K X q Atoms K q K X
14 1 5 atbase q Atoms K q B
15 14 anim1i q Atoms K q K X q B q K X
16 13 15 sylbi q c Atoms K | c K X q B q K X
17 11 16 anim12i p c Atoms K | c K X q c Atoms K | c K X p B p K X q B q K X
18 an4 p B p K X q B q K X p B q B p K X q K X
19 17 18 sylib p c Atoms K | c K X q c Atoms K | c K X p B q B p K X q K X
20 19 anim2i K Lat X B p c Atoms K | c K X q c Atoms K | c K X K Lat X B p B q B p K X q K X
21 1 5 atbase r Atoms K r B
22 eqid join K = join K
23 1 4 22 latjle12 K Lat p B q B X B p K X q K X p join K q K X
24 23 biimpd K Lat p B q B X B p K X q K X p join K q K X
25 24 3exp2 K Lat p B q B X B p K X q K X p join K q K X
26 25 impd K Lat p B q B X B p K X q K X p join K q K X
27 26 com23 K Lat X B p B q B p K X q K X p join K q K X
28 27 imp43 K Lat X B p B q B p K X q K X p join K q K X
29 28 adantr K Lat X B p B q B p K X q K X r B p join K q K X
30 1 22 latjcl K Lat p B q B p join K q B
31 30 3expib K Lat p B q B p join K q B
32 1 4 lattr K Lat r B p join K q B X B r K p join K q p join K q K X r K X
33 32 3exp2 K Lat r B p join K q B X B r K p join K q p join K q K X r K X
34 33 com24 K Lat X B p join K q B r B r K p join K q p join K q K X r K X
35 31 34 syl5d K Lat X B p B q B r B r K p join K q p join K q K X r K X
36 35 imp41 K Lat X B p B q B r B r K p join K q p join K q K X r K X
37 36 adantlrr K Lat X B p B q B p K X q K X r B r K p join K q p join K q K X r K X
38 29 37 mpan2d K Lat X B p B q B p K X q K X r B r K p join K q r K X
39 20 21 38 syl2an K Lat X B p c Atoms K | c K X q c Atoms K | c K X r Atoms K r K p join K q r K X
40 simpr K Lat X B p c Atoms K | c K X q c Atoms K | c K X r Atoms K r Atoms K
41 39 40 jctild K Lat X B p c Atoms K | c K X q c Atoms K | c K X r Atoms K r K p join K q r Atoms K r K X
42 breq1 c = r c K X r K X
43 42 elrab r c Atoms K | c K X r Atoms K r K X
44 41 43 syl6ibr K Lat X B p c Atoms K | c K X q c Atoms K | c K X r Atoms K r K p join K q r c Atoms K | c K X
45 44 ralrimiva K Lat X B p c Atoms K | c K X q c Atoms K | c K X r Atoms K r K p join K q r c Atoms K | c K X
46 45 ralrimivva K Lat X B p c Atoms K | c K X q c Atoms K | c K X r Atoms K r K p join K q r c Atoms K | c K X
47 ssrab2 c Atoms K | c K X Atoms K
48 46 47 jctil K Lat X B c Atoms K | c K X Atoms K p c Atoms K | c K X q c Atoms K | c K X r Atoms K r K p join K q r c Atoms K | c K X
49 4 22 5 2 ispsubsp K Lat c Atoms K | c K X S c Atoms K | c K X Atoms K p c Atoms K | c K X q c Atoms K | c K X r Atoms K r K p join K q r c Atoms K | c K X
50 49 adantr K Lat X B c Atoms K | c K X S c Atoms K | c K X Atoms K p c Atoms K | c K X q c Atoms K | c K X r Atoms K r K p join K q r c Atoms K | c K X
51 48 50 mpbird K Lat X B c Atoms K | c K X S
52 6 51 eqeltrd K Lat X B M X S