Metamath Proof Explorer


Theorem pmapval

Description: Value of the projective map of a Hilbert lattice. Definition in Theorem 15.5 of MaedaMaeda p. 62. (Contributed by NM, 2-Oct-2011)

Ref Expression
Hypotheses pmapfval.b B = Base K
pmapfval.l ˙ = K
pmapfval.a A = Atoms K
pmapfval.m M = pmap K
Assertion pmapval K C X B M X = a A | a ˙ X

Proof

Step Hyp Ref Expression
1 pmapfval.b B = Base K
2 pmapfval.l ˙ = K
3 pmapfval.a A = Atoms K
4 pmapfval.m M = pmap K
5 1 2 3 4 pmapfval K C M = x B a A | a ˙ x
6 5 fveq1d K C M X = x B a A | a ˙ x X
7 breq2 x = X a ˙ x a ˙ X
8 7 rabbidv x = X a A | a ˙ x = a A | a ˙ X
9 eqid x B a A | a ˙ x = x B a A | a ˙ x
10 3 fvexi A V
11 10 rabex a A | a ˙ X V
12 8 9 11 fvmpt X B x B a A | a ˙ x X = a A | a ˙ X
13 6 12 sylan9eq K C X B M X = a A | a ˙ X