Metamath Proof Explorer


Theorem pmat0opsc

Description: The zero polynomial matrix over a ring represented as operation with "lifted scalars" (i.e. elements of the ring underlying the polynomial ring embedded into the polynomial ring by the scalar injection/algebraic scalars function algSc ). (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmat0opsc.p P=Poly1R
pmat0opsc.c C=NMatP
pmat0opsc.a A=algScP
pmat0opsc.z 0˙=0R
Assertion pmat0opsc NFinRRing0C=iN,jNA0˙

Proof

Step Hyp Ref Expression
1 pmat0opsc.p P=Poly1R
2 pmat0opsc.c C=NMatP
3 pmat0opsc.a A=algScP
4 pmat0opsc.z 0˙=0R
5 eqid 0P=0P
6 1 2 5 pmat0op NFinRRing0C=iN,jN0P
7 1 3 4 5 ply1scl0 RRingA0˙=0P
8 7 eqcomd RRing0P=A0˙
9 8 adantl NFinRRing0P=A0˙
10 9 mpoeq3dv NFinRRingiN,jN0P=iN,jNA0˙
11 6 10 eqtrd NFinRRing0C=iN,jNA0˙