Metamath Proof Explorer


Theorem pmat0opsc

Description: The zero polynomial matrix over a ring represented as operation with "lifted scalars" (i.e. elements of the ring underlying the polynomial ring embedded into the polynomial ring by the scalar injection/algebraic scalars function algSc ). (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmat0opsc.p P = Poly 1 R
pmat0opsc.c C = N Mat P
pmat0opsc.a A = algSc P
pmat0opsc.z 0 ˙ = 0 R
Assertion pmat0opsc N Fin R Ring 0 C = i N , j N A 0 ˙

Proof

Step Hyp Ref Expression
1 pmat0opsc.p P = Poly 1 R
2 pmat0opsc.c C = N Mat P
3 pmat0opsc.a A = algSc P
4 pmat0opsc.z 0 ˙ = 0 R
5 eqid 0 P = 0 P
6 1 2 5 pmat0op N Fin R Ring 0 C = i N , j N 0 P
7 1 3 4 5 ply1scl0 R Ring A 0 ˙ = 0 P
8 7 eqcomd R Ring 0 P = A 0 ˙
9 8 adantl N Fin R Ring 0 P = A 0 ˙
10 9 mpoeq3dv N Fin R Ring i N , j N 0 P = i N , j N A 0 ˙
11 6 10 eqtrd N Fin R Ring 0 C = i N , j N A 0 ˙