Metamath Proof Explorer


Theorem pmat1op

Description: The identity polynomial matrix over a ring represented as operation. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmatring.p P = Poly 1 R
pmatring.c C = N Mat P
pmat0op.z 0 ˙ = 0 P
pmat1op.o 1 ˙ = 1 P
Assertion pmat1op N Fin R Ring 1 C = i N , j N if i = j 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 pmatring.p P = Poly 1 R
2 pmatring.c C = N Mat P
3 pmat0op.z 0 ˙ = 0 P
4 pmat1op.o 1 ˙ = 1 P
5 1 ply1ring R Ring P Ring
6 2 4 3 mat1 N Fin P Ring 1 C = i N , j N if i = j 1 ˙ 0 ˙
7 5 6 sylan2 N Fin R Ring 1 C = i N , j N if i = j 1 ˙ 0 ˙