Metamath Proof Explorer


Theorem pmat1ovd

Description: Entries of the identity polynomial matrix over a ring, deduction form. (Contributed by AV, 16-Nov-2019)

Ref Expression
Hypotheses pmatring.p P = Poly 1 R
pmatring.c C = N Mat P
pmat0op.z 0 ˙ = 0 P
pmat1op.o 1 ˙ = 1 P
pmat1ovd.n φ N Fin
pmat1ovd.r φ R Ring
pmat1ovd.i φ I N
pmat1ovd.j φ J N
pmat1ovd.u U = 1 C
Assertion pmat1ovd φ I U J = if I = J 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 pmatring.p P = Poly 1 R
2 pmatring.c C = N Mat P
3 pmat0op.z 0 ˙ = 0 P
4 pmat1op.o 1 ˙ = 1 P
5 pmat1ovd.n φ N Fin
6 pmat1ovd.r φ R Ring
7 pmat1ovd.i φ I N
8 pmat1ovd.j φ J N
9 pmat1ovd.u U = 1 C
10 1 ply1ring R Ring P Ring
11 6 10 syl φ P Ring
12 2 4 3 5 11 7 8 9 mat1ov φ I U J = if I = J 1 ˙ 0 ˙