Metamath Proof Explorer
Description: Entries of the identity polynomial matrix over a ring, deduction form.
(Contributed by AV, 16-Nov-2019)
|
|
Ref |
Expression |
|
Hypotheses |
pmatring.p |
|
|
|
pmatring.c |
|
|
|
pmat0op.z |
|
|
|
pmat1op.o |
|
|
|
pmat1ovd.n |
|
|
|
pmat1ovd.r |
|
|
|
pmat1ovd.i |
|
|
|
pmat1ovd.j |
|
|
|
pmat1ovd.u |
|
|
Assertion |
pmat1ovd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
pmatring.p |
|
2 |
|
pmatring.c |
|
3 |
|
pmat0op.z |
|
4 |
|
pmat1op.o |
|
5 |
|
pmat1ovd.n |
|
6 |
|
pmat1ovd.r |
|
7 |
|
pmat1ovd.i |
|
8 |
|
pmat1ovd.j |
|
9 |
|
pmat1ovd.u |
|
10 |
1
|
ply1ring |
|
11 |
6 10
|
syl |
|
12 |
2 4 3 5 11 7 8 9
|
mat1ov |
|