Metamath Proof Explorer


Theorem pmatassa

Description: The set of polynomial matrices over a commutative ring is an associative algebra. (Contributed by AV, 16-Jun-2024)

Ref Expression
Hypotheses pmatring.p P = Poly 1 R
pmatring.c C = N Mat P
Assertion pmatassa N Fin R CRing C AssAlg

Proof

Step Hyp Ref Expression
1 pmatring.p P = Poly 1 R
2 pmatring.c C = N Mat P
3 1 ply1crng R CRing P CRing
4 2 matassa N Fin P CRing C AssAlg
5 3 4 sylan2 N Fin R CRing C AssAlg