Metamath Proof Explorer


Theorem pmatassa

Description: The set of polynomial matrices over a commutative ring is an associative algebra. (Contributed by AV, 16-Jun-2024)

Ref Expression
Hypotheses pmatring.p P=Poly1R
pmatring.c C=NMatP
Assertion pmatassa NFinRCRingCAssAlg

Proof

Step Hyp Ref Expression
1 pmatring.p P=Poly1R
2 pmatring.c C=NMatP
3 1 ply1crng RCRingPCRing
4 2 matassa NFinPCRingCAssAlg
5 3 4 sylan2 NFinRCRingCAssAlg