Metamath Proof Explorer


Theorem pmatcoe1fsupp

Description: For a polynomial matrix there is an upper bound for the coefficients of all the polynomials being not 0. (Contributed by AV, 3-Oct-2019) (Proof shortened by AV, 28-Nov-2019)

Ref Expression
Hypotheses pmatcoe1fsupp.p P = Poly 1 R
pmatcoe1fsupp.c C = N Mat P
pmatcoe1fsupp.b B = Base C
pmatcoe1fsupp.0 0 ˙ = 0 R
Assertion pmatcoe1fsupp N Fin R Ring M B s 0 x 0 s < x i N j N coe 1 i M j x = 0 ˙

Proof

Step Hyp Ref Expression
1 pmatcoe1fsupp.p P = Poly 1 R
2 pmatcoe1fsupp.c C = N Mat P
3 pmatcoe1fsupp.b B = Base C
4 pmatcoe1fsupp.0 0 ˙ = 0 R
5 ssrab2 v Base R 0 | finSupp 0 ˙ v Base R 0
6 5 a1i N Fin R Ring M B v Base R 0 | finSupp 0 ˙ v Base R 0
7 6 olcd N Fin R Ring M B u N × N coe 1 M u Base R 0 v Base R 0 | finSupp 0 ˙ v Base R 0
8 inss u N × N coe 1 M u Base R 0 v Base R 0 | finSupp 0 ˙ v Base R 0 u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v Base R 0
9 7 8 syl N Fin R Ring M B u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v Base R 0
10 xpfi N Fin N Fin N × N Fin
11 10 anidms N Fin N × N Fin
12 snfi coe 1 M u Fin
13 12 a1i N Fin u N × N coe 1 M u Fin
14 13 ralrimiva N Fin u N × N coe 1 M u Fin
15 11 14 jca N Fin N × N Fin u N × N coe 1 M u Fin
16 15 3ad2ant1 N Fin R Ring M B N × N Fin u N × N coe 1 M u Fin
17 iunfi N × N Fin u N × N coe 1 M u Fin u N × N coe 1 M u Fin
18 infi u N × N coe 1 M u Fin u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v Fin
19 16 17 18 3syl N Fin R Ring M B u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v Fin
20 fvex 0 R V
21 4 20 eqeltri 0 ˙ V
22 21 a1i N Fin R Ring M B 0 ˙ V
23 elin w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v w u N × N coe 1 M u w v Base R 0 | finSupp 0 ˙ v
24 breq1 v = w finSupp 0 ˙ v finSupp 0 ˙ w
25 24 elrab w v Base R 0 | finSupp 0 ˙ v w Base R 0 finSupp 0 ˙ w
26 25 simprbi w v Base R 0 | finSupp 0 ˙ v finSupp 0 ˙ w
27 23 26 simplbiim w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v finSupp 0 ˙ w
28 27 rgen w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v finSupp 0 ˙ w
29 28 a1i N Fin R Ring M B w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v finSupp 0 ˙ w
30 fsuppmapnn0fiub0 u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v Base R 0 u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v Fin 0 ˙ V w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v finSupp 0 ˙ w s 0 w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v z 0 s < z w z = 0 ˙
31 30 imp u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v Base R 0 u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v Fin 0 ˙ V w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v finSupp 0 ˙ w s 0 w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v z 0 s < z w z = 0 ˙
32 9 19 22 29 31 syl31anc N Fin R Ring M B s 0 w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v z 0 s < z w z = 0 ˙
33 opelxpi i N j N i j N × N
34 df-ov i M j = M i j
35 34 fveq2i coe 1 i M j = coe 1 M i j
36 fvex coe 1 M i j V
37 36 snid coe 1 M i j coe 1 M i j
38 35 37 eqeltri coe 1 i M j coe 1 M i j
39 38 a1i i N j N coe 1 i M j coe 1 M i j
40 2fveq3 u = i j coe 1 M u = coe 1 M i j
41 40 sneqd u = i j coe 1 M u = coe 1 M i j
42 41 eliuni i j N × N coe 1 i M j coe 1 M i j coe 1 i M j u N × N coe 1 M u
43 33 39 42 syl2anc i N j N coe 1 i M j u N × N coe 1 M u
44 43 adantl N Fin R Ring M B s 0 x 0 i N j N coe 1 i M j u N × N coe 1 M u
45 eqid Base P = Base P
46 simprl N Fin R Ring M B s 0 x 0 i N j N i N
47 simprr N Fin R Ring M B s 0 x 0 i N j N j N
48 3 eleq2i M B M Base C
49 48 biimpi M B M Base C
50 49 3ad2ant3 N Fin R Ring M B M Base C
51 50 ad3antrrr N Fin R Ring M B s 0 x 0 i N j N M Base C
52 51 3 eleqtrrdi N Fin R Ring M B s 0 x 0 i N j N M B
53 2 45 3 46 47 52 matecld N Fin R Ring M B s 0 x 0 i N j N i M j Base P
54 eqid coe 1 i M j = coe 1 i M j
55 eqid 0 R = 0 R
56 eqid Base R = Base R
57 54 45 1 55 56 coe1fsupp i M j Base P coe 1 i M j v Base R 0 | finSupp 0 R v
58 53 57 syl N Fin R Ring M B s 0 x 0 i N j N coe 1 i M j v Base R 0 | finSupp 0 R v
59 4 a1i N Fin R Ring M B 0 ˙ = 0 R
60 59 breq2d N Fin R Ring M B finSupp 0 ˙ v finSupp 0 R v
61 60 rabbidv N Fin R Ring M B v Base R 0 | finSupp 0 ˙ v = v Base R 0 | finSupp 0 R v
62 61 eleq2d N Fin R Ring M B coe 1 i M j v Base R 0 | finSupp 0 ˙ v coe 1 i M j v Base R 0 | finSupp 0 R v
63 62 ad3antrrr N Fin R Ring M B s 0 x 0 i N j N coe 1 i M j v Base R 0 | finSupp 0 ˙ v coe 1 i M j v Base R 0 | finSupp 0 R v
64 58 63 mpbird N Fin R Ring M B s 0 x 0 i N j N coe 1 i M j v Base R 0 | finSupp 0 ˙ v
65 44 64 elind N Fin R Ring M B s 0 x 0 i N j N coe 1 i M j u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v
66 simplr N Fin R Ring M B s 0 x 0 i N j N x 0
67 fveq1 w = coe 1 i M j w z = coe 1 i M j z
68 67 eqeq1d w = coe 1 i M j w z = 0 ˙ coe 1 i M j z = 0 ˙
69 68 imbi2d w = coe 1 i M j s < z w z = 0 ˙ s < z coe 1 i M j z = 0 ˙
70 breq2 z = x s < z s < x
71 fveqeq2 z = x coe 1 i M j z = 0 ˙ coe 1 i M j x = 0 ˙
72 70 71 imbi12d z = x s < z coe 1 i M j z = 0 ˙ s < x coe 1 i M j x = 0 ˙
73 69 72 rspc2v coe 1 i M j u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v x 0 w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v z 0 s < z w z = 0 ˙ s < x coe 1 i M j x = 0 ˙
74 65 66 73 syl2anc N Fin R Ring M B s 0 x 0 i N j N w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v z 0 s < z w z = 0 ˙ s < x coe 1 i M j x = 0 ˙
75 74 ex N Fin R Ring M B s 0 x 0 i N j N w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v z 0 s < z w z = 0 ˙ s < x coe 1 i M j x = 0 ˙
76 75 com23 N Fin R Ring M B s 0 x 0 w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v z 0 s < z w z = 0 ˙ i N j N s < x coe 1 i M j x = 0 ˙
77 76 impancom N Fin R Ring M B s 0 w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v z 0 s < z w z = 0 ˙ x 0 i N j N s < x coe 1 i M j x = 0 ˙
78 77 imp N Fin R Ring M B s 0 w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v z 0 s < z w z = 0 ˙ x 0 i N j N s < x coe 1 i M j x = 0 ˙
79 78 com23 N Fin R Ring M B s 0 w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v z 0 s < z w z = 0 ˙ x 0 s < x i N j N coe 1 i M j x = 0 ˙
80 79 ralrimdvv N Fin R Ring M B s 0 w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v z 0 s < z w z = 0 ˙ x 0 s < x i N j N coe 1 i M j x = 0 ˙
81 80 ralrimiva N Fin R Ring M B s 0 w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v z 0 s < z w z = 0 ˙ x 0 s < x i N j N coe 1 i M j x = 0 ˙
82 81 ex N Fin R Ring M B s 0 w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v z 0 s < z w z = 0 ˙ x 0 s < x i N j N coe 1 i M j x = 0 ˙
83 82 reximdva N Fin R Ring M B s 0 w u N × N coe 1 M u v Base R 0 | finSupp 0 ˙ v z 0 s < z w z = 0 ˙ s 0 x 0 s < x i N j N coe 1 i M j x = 0 ˙
84 32 83 mpd N Fin R Ring M B s 0 x 0 s < x i N j N coe 1 i M j x = 0 ˙