Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcoe1fsupp.p |
|
2 |
|
pmatcoe1fsupp.c |
|
3 |
|
pmatcoe1fsupp.b |
|
4 |
|
pmatcoe1fsupp.0 |
|
5 |
|
ssrab2 |
|
6 |
5
|
a1i |
|
7 |
6
|
olcd |
|
8 |
|
inss |
|
9 |
7 8
|
syl |
|
10 |
|
xpfi |
|
11 |
10
|
anidms |
|
12 |
|
snfi |
|
13 |
12
|
a1i |
|
14 |
13
|
ralrimiva |
|
15 |
11 14
|
jca |
|
16 |
15
|
3ad2ant1 |
|
17 |
|
iunfi |
|
18 |
|
infi |
|
19 |
16 17 18
|
3syl |
|
20 |
|
fvex |
|
21 |
4 20
|
eqeltri |
|
22 |
21
|
a1i |
|
23 |
|
elin |
|
24 |
|
breq1 |
|
25 |
24
|
elrab |
|
26 |
25
|
simprbi |
|
27 |
23 26
|
simplbiim |
|
28 |
27
|
rgen |
|
29 |
28
|
a1i |
|
30 |
|
fsuppmapnn0fiub0 |
|
31 |
30
|
imp |
|
32 |
9 19 22 29 31
|
syl31anc |
|
33 |
|
opelxpi |
|
34 |
|
df-ov |
|
35 |
34
|
fveq2i |
|
36 |
|
fvex |
|
37 |
36
|
snid |
|
38 |
35 37
|
eqeltri |
|
39 |
38
|
a1i |
|
40 |
|
2fveq3 |
|
41 |
40
|
sneqd |
|
42 |
41
|
eliuni |
|
43 |
33 39 42
|
syl2anc |
|
44 |
43
|
adantl |
|
45 |
|
eqid |
|
46 |
|
simprl |
|
47 |
|
simprr |
|
48 |
3
|
eleq2i |
|
49 |
48
|
biimpi |
|
50 |
49
|
3ad2ant3 |
|
51 |
50
|
ad3antrrr |
|
52 |
51 3
|
eleqtrrdi |
|
53 |
2 45 3 46 47 52
|
matecld |
|
54 |
|
eqid |
|
55 |
|
eqid |
|
56 |
|
eqid |
|
57 |
54 45 1 55 56
|
coe1fsupp |
|
58 |
53 57
|
syl |
|
59 |
4
|
a1i |
|
60 |
59
|
breq2d |
|
61 |
60
|
rabbidv |
|
62 |
61
|
eleq2d |
|
63 |
62
|
ad3antrrr |
|
64 |
58 63
|
mpbird |
|
65 |
44 64
|
elind |
|
66 |
|
simplr |
|
67 |
|
fveq1 |
|
68 |
67
|
eqeq1d |
|
69 |
68
|
imbi2d |
|
70 |
|
breq2 |
|
71 |
|
fveqeq2 |
|
72 |
70 71
|
imbi12d |
|
73 |
69 72
|
rspc2v |
|
74 |
65 66 73
|
syl2anc |
|
75 |
74
|
ex |
|
76 |
75
|
com23 |
|
77 |
76
|
impancom |
|
78 |
77
|
imp |
|
79 |
78
|
com23 |
|
80 |
79
|
ralrimdvv |
|
81 |
80
|
ralrimiva |
|
82 |
81
|
ex |
|
83 |
82
|
reximdva |
|
84 |
32 83
|
mpd |
|