Metamath Proof Explorer


Theorem pmatcollpw

Description: Write a polynomial matrix (over a commutative ring) as a sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 26-Oct-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pmatcollpw.p P = Poly 1 R
pmatcollpw.c C = N Mat P
pmatcollpw.b B = Base C
pmatcollpw.m ˙ = C
pmatcollpw.e × ˙ = mulGrp P
pmatcollpw.x X = var 1 R
pmatcollpw.t T = N matToPolyMat R
Assertion pmatcollpw N Fin R CRing M B M = C n 0 n × ˙ X ˙ T M decompPMat n

Proof

Step Hyp Ref Expression
1 pmatcollpw.p P = Poly 1 R
2 pmatcollpw.c C = N Mat P
3 pmatcollpw.b B = Base C
4 pmatcollpw.m ˙ = C
5 pmatcollpw.e × ˙ = mulGrp P
6 pmatcollpw.x X = var 1 R
7 pmatcollpw.t T = N matToPolyMat R
8 crngring R CRing R Ring
9 eqid P = P
10 1 2 3 9 5 6 pmatcollpw2 N Fin R Ring M B M = C n 0 i N , j N i M decompPMat n j P n × ˙ X
11 8 10 syl3an2 N Fin R CRing M B M = C n 0 i N , j N i M decompPMat n j P n × ˙ X
12 eqidd N Fin R CRing M B n 0 a N b N i N , j N i M decompPMat n j P n × ˙ X = i N , j N i M decompPMat n j P n × ˙ X
13 oveq12 i = a j = b i M decompPMat n j = a M decompPMat n b
14 13 oveq1d i = a j = b i M decompPMat n j P n × ˙ X = a M decompPMat n b P n × ˙ X
15 14 adantl N Fin R CRing M B n 0 a N b N i = a j = b i M decompPMat n j P n × ˙ X = a M decompPMat n b P n × ˙ X
16 simprl N Fin R CRing M B n 0 a N b N a N
17 simpr a N b N b N
18 17 adantl N Fin R CRing M B n 0 a N b N b N
19 simp2 N Fin R CRing M B R CRing
20 19 adantr N Fin R CRing M B n 0 R CRing
21 20 8 syl N Fin R CRing M B n 0 R Ring
22 21 adantr N Fin R CRing M B n 0 a N b N R Ring
23 eqid N Mat R = N Mat R
24 eqid Base R = Base R
25 eqid Base N Mat R = Base N Mat R
26 simp3 N Fin R CRing M B M B
27 26 adantr N Fin R CRing M B n 0 M B
28 simpr N Fin R CRing M B n 0 n 0
29 1 2 3 23 25 decpmatcl R CRing M B n 0 M decompPMat n Base N Mat R
30 20 27 28 29 syl3anc N Fin R CRing M B n 0 M decompPMat n Base N Mat R
31 30 adantr N Fin R CRing M B n 0 a N b N M decompPMat n Base N Mat R
32 23 24 25 16 18 31 matecld N Fin R CRing M B n 0 a N b N a M decompPMat n b Base R
33 simplr N Fin R CRing M B n 0 a N b N n 0
34 eqid mulGrp P = mulGrp P
35 eqid Base P = Base P
36 24 1 6 9 34 5 35 ply1tmcl R Ring a M decompPMat n b Base R n 0 a M decompPMat n b P n × ˙ X Base P
37 22 32 33 36 syl3anc N Fin R CRing M B n 0 a N b N a M decompPMat n b P n × ˙ X Base P
38 12 15 16 18 37 ovmpod N Fin R CRing M B n 0 a N b N a i N , j N i M decompPMat n j P n × ˙ X b = a M decompPMat n b P n × ˙ X
39 1 2 3 4 5 6 7 pmatcollpwlem N Fin R CRing M B n 0 a N b N a M decompPMat n b P n × ˙ X = a n × ˙ X ˙ T M decompPMat n b
40 39 3expb N Fin R CRing M B n 0 a N b N a M decompPMat n b P n × ˙ X = a n × ˙ X ˙ T M decompPMat n b
41 38 40 eqtrd N Fin R CRing M B n 0 a N b N a i N , j N i M decompPMat n j P n × ˙ X b = a n × ˙ X ˙ T M decompPMat n b
42 41 ralrimivva N Fin R CRing M B n 0 a N b N a i N , j N i M decompPMat n j P n × ˙ X b = a n × ˙ X ˙ T M decompPMat n b
43 simpl1 N Fin R CRing M B n 0 N Fin
44 1 ply1ring R Ring P Ring
45 8 44 syl R CRing P Ring
46 45 3ad2ant2 N Fin R CRing M B P Ring
47 46 adantr N Fin R CRing M B n 0 P Ring
48 21 3ad2ant1 N Fin R CRing M B n 0 i N j N R Ring
49 simp2 N Fin R CRing M B n 0 i N j N i N
50 simp3 N Fin R CRing M B n 0 i N j N j N
51 30 3ad2ant1 N Fin R CRing M B n 0 i N j N M decompPMat n Base N Mat R
52 23 24 25 49 50 51 matecld N Fin R CRing M B n 0 i N j N i M decompPMat n j Base R
53 28 3ad2ant1 N Fin R CRing M B n 0 i N j N n 0
54 24 1 6 9 34 5 35 ply1tmcl R Ring i M decompPMat n j Base R n 0 i M decompPMat n j P n × ˙ X Base P
55 48 52 53 54 syl3anc N Fin R CRing M B n 0 i N j N i M decompPMat n j P n × ˙ X Base P
56 2 35 3 43 47 55 matbas2d N Fin R CRing M B n 0 i N , j N i M decompPMat n j P n × ˙ X B
57 8 3ad2ant2 N Fin R CRing M B R Ring
58 1 6 34 5 35 ply1moncl R Ring n 0 n × ˙ X Base P
59 57 58 sylan N Fin R CRing M B n 0 n × ˙ X Base P
60 57 adantr N Fin R CRing M B n 0 R Ring
61 7 23 25 1 2 mat2pmatbas N Fin R Ring M decompPMat n Base N Mat R T M decompPMat n Base C
62 43 60 30 61 syl3anc N Fin R CRing M B n 0 T M decompPMat n Base C
63 62 3 eleqtrrdi N Fin R CRing M B n 0 T M decompPMat n B
64 35 2 3 4 matvscl N Fin P Ring n × ˙ X Base P T M decompPMat n B n × ˙ X ˙ T M decompPMat n B
65 43 47 59 63 64 syl22anc N Fin R CRing M B n 0 n × ˙ X ˙ T M decompPMat n B
66 2 3 eqmat i N , j N i M decompPMat n j P n × ˙ X B n × ˙ X ˙ T M decompPMat n B i N , j N i M decompPMat n j P n × ˙ X = n × ˙ X ˙ T M decompPMat n a N b N a i N , j N i M decompPMat n j P n × ˙ X b = a n × ˙ X ˙ T M decompPMat n b
67 56 65 66 syl2anc N Fin R CRing M B n 0 i N , j N i M decompPMat n j P n × ˙ X = n × ˙ X ˙ T M decompPMat n a N b N a i N , j N i M decompPMat n j P n × ˙ X b = a n × ˙ X ˙ T M decompPMat n b
68 42 67 mpbird N Fin R CRing M B n 0 i N , j N i M decompPMat n j P n × ˙ X = n × ˙ X ˙ T M decompPMat n
69 68 mpteq2dva N Fin R CRing M B n 0 i N , j N i M decompPMat n j P n × ˙ X = n 0 n × ˙ X ˙ T M decompPMat n
70 69 oveq2d N Fin R CRing M B C n 0 i N , j N i M decompPMat n j P n × ˙ X = C n 0 n × ˙ X ˙ T M decompPMat n
71 11 70 eqtrd N Fin R CRing M B M = C n 0 n × ˙ X ˙ T M decompPMat n