Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpw1.p |
|
2 |
|
pmatcollpw1.c |
|
3 |
|
pmatcollpw1.b |
|
4 |
|
pmatcollpw1.m |
|
5 |
|
pmatcollpw1.e |
|
6 |
|
pmatcollpw1.x |
|
7 |
1 2 3 4 5 6
|
pmatcollpw1lem2 |
|
8 |
|
eqidd |
|
9 |
|
oveq12 |
|
10 |
9
|
oveq1d |
|
11 |
10
|
mpteq2dv |
|
12 |
11
|
oveq2d |
|
13 |
12
|
adantl |
|
14 |
|
simprl |
|
15 |
|
simprr |
|
16 |
|
eqid |
|
17 |
|
eqid |
|
18 |
1
|
ply1ring |
|
19 |
|
ringcmn |
|
20 |
18 19
|
syl |
|
21 |
20
|
3ad2ant2 |
|
22 |
21
|
adantr |
|
23 |
|
nn0ex |
|
24 |
23
|
a1i |
|
25 |
|
simpl2 |
|
26 |
25
|
adantr |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
|
eqid |
|
30 |
|
simplrl |
|
31 |
15
|
adantr |
|
32 |
|
simpl3 |
|
33 |
32
|
adantr |
|
34 |
|
simpr |
|
35 |
1 2 3 27 29
|
decpmatcl |
|
36 |
26 33 34 35
|
syl3anc |
|
37 |
27 28 29 30 31 36
|
matecld |
|
38 |
|
eqid |
|
39 |
28 1 6 4 38 5 16
|
ply1tmcl |
|
40 |
26 37 34 39
|
syl3anc |
|
41 |
40
|
fmpttd |
|
42 |
1 2 3 4 5 6
|
pmatcollpw1lem1 |
|
43 |
42
|
3expb |
|
44 |
16 17 22 24 41 43
|
gsumcl |
|
45 |
8 13 14 15 44
|
ovmpod |
|
46 |
7 45
|
eqtr4d |
|
47 |
46
|
ralrimivva |
|
48 |
|
simp3 |
|
49 |
|
simp1 |
|
50 |
18
|
3ad2ant2 |
|
51 |
21
|
3ad2ant1 |
|
52 |
23
|
a1i |
|
53 |
|
simpl12 |
|
54 |
|
simpl2 |
|
55 |
|
simpl3 |
|
56 |
48
|
3ad2ant1 |
|
57 |
56
|
adantr |
|
58 |
|
simpr |
|
59 |
53 57 58 35
|
syl3anc |
|
60 |
27 28 29 54 55 59
|
matecld |
|
61 |
28 1 6 4 38 5 16
|
ply1tmcl |
|
62 |
53 60 58 61
|
syl3anc |
|
63 |
62
|
fmpttd |
|
64 |
1 2 3 4 5 6
|
pmatcollpw1lem1 |
|
65 |
16 17 51 52 63 64
|
gsumcl |
|
66 |
2 16 3 49 50 65
|
matbas2d |
|
67 |
2 3
|
eqmat |
|
68 |
48 66 67
|
syl2anc |
|
69 |
47 68
|
mpbird |
|