Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpw1.p |
|
2 |
|
pmatcollpw1.c |
|
3 |
|
pmatcollpw1.b |
|
4 |
|
pmatcollpw1.m |
|
5 |
|
pmatcollpw1.e |
|
6 |
|
pmatcollpw1.x |
|
7 |
|
fvexd |
|
8 |
|
ovexd |
|
9 |
|
oveq2 |
|
10 |
9
|
oveqd |
|
11 |
|
oveq1 |
|
12 |
10 11
|
oveq12d |
|
13 |
|
eqid |
|
14 |
|
simp2 |
|
15 |
|
simp3 |
|
16 |
|
simp13 |
|
17 |
2 13 3 14 15 16
|
matecld |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
18 13 1 19
|
coe1ae0 |
|
21 |
17 20
|
syl |
|
22 |
|
simpl12 |
|
23 |
16
|
adantr |
|
24 |
|
simpr |
|
25 |
|
3simpc |
|
26 |
25
|
adantr |
|
27 |
1 2 3
|
decpmate |
|
28 |
22 23 24 26 27
|
syl31anc |
|
29 |
28
|
adantr |
|
30 |
|
simpr |
|
31 |
29 30
|
eqtrd |
|
32 |
31
|
oveq1d |
|
33 |
|
eqid |
|
34 |
1 6 33 5 13
|
ply1moncl |
|
35 |
22 24 34
|
syl2anc |
|
36 |
1 13 4 19
|
ply10s0 |
|
37 |
22 35 36
|
syl2anc |
|
38 |
37
|
adantr |
|
39 |
32 38
|
eqtrd |
|
40 |
39
|
ex |
|
41 |
40
|
imim2d |
|
42 |
41
|
ralimdva |
|
43 |
42
|
reximdv |
|
44 |
21 43
|
mpd |
|
45 |
7 8 12 44
|
mptnn0fsuppd |
|