Metamath Proof Explorer


Theorem pmatcollpw1lem1

Description: Lemma 1 for pmatcollpw1 . (Contributed by AV, 28-Sep-2019) (Revised by AV, 3-Dec-2019)

Ref Expression
Hypotheses pmatcollpw1.p P = Poly 1 R
pmatcollpw1.c C = N Mat P
pmatcollpw1.b B = Base C
pmatcollpw1.m × ˙ = P
pmatcollpw1.e × ˙ = mulGrp P
pmatcollpw1.x X = var 1 R
Assertion pmatcollpw1lem1 N Fin R Ring M B I N J N finSupp 0 P n 0 I M decompPMat n J × ˙ n × ˙ X

Proof

Step Hyp Ref Expression
1 pmatcollpw1.p P = Poly 1 R
2 pmatcollpw1.c C = N Mat P
3 pmatcollpw1.b B = Base C
4 pmatcollpw1.m × ˙ = P
5 pmatcollpw1.e × ˙ = mulGrp P
6 pmatcollpw1.x X = var 1 R
7 fvexd N Fin R Ring M B I N J N 0 P V
8 ovexd N Fin R Ring M B I N J N n 0 I M decompPMat n J × ˙ n × ˙ X V
9 oveq2 n = x M decompPMat n = M decompPMat x
10 9 oveqd n = x I M decompPMat n J = I M decompPMat x J
11 oveq1 n = x n × ˙ X = x × ˙ X
12 10 11 oveq12d n = x I M decompPMat n J × ˙ n × ˙ X = I M decompPMat x J × ˙ x × ˙ X
13 eqid Base P = Base P
14 simp2 N Fin R Ring M B I N J N I N
15 simp3 N Fin R Ring M B I N J N J N
16 simp13 N Fin R Ring M B I N J N M B
17 2 13 3 14 15 16 matecld N Fin R Ring M B I N J N I M J Base P
18 eqid coe 1 I M J = coe 1 I M J
19 eqid 0 R = 0 R
20 18 13 1 19 coe1ae0 I M J Base P s 0 x 0 s < x coe 1 I M J x = 0 R
21 17 20 syl N Fin R Ring M B I N J N s 0 x 0 s < x coe 1 I M J x = 0 R
22 simpl12 N Fin R Ring M B I N J N x 0 R Ring
23 16 adantr N Fin R Ring M B I N J N x 0 M B
24 simpr N Fin R Ring M B I N J N x 0 x 0
25 3simpc N Fin R Ring M B I N J N I N J N
26 25 adantr N Fin R Ring M B I N J N x 0 I N J N
27 1 2 3 decpmate R Ring M B x 0 I N J N I M decompPMat x J = coe 1 I M J x
28 22 23 24 26 27 syl31anc N Fin R Ring M B I N J N x 0 I M decompPMat x J = coe 1 I M J x
29 28 adantr N Fin R Ring M B I N J N x 0 coe 1 I M J x = 0 R I M decompPMat x J = coe 1 I M J x
30 simpr N Fin R Ring M B I N J N x 0 coe 1 I M J x = 0 R coe 1 I M J x = 0 R
31 29 30 eqtrd N Fin R Ring M B I N J N x 0 coe 1 I M J x = 0 R I M decompPMat x J = 0 R
32 31 oveq1d N Fin R Ring M B I N J N x 0 coe 1 I M J x = 0 R I M decompPMat x J × ˙ x × ˙ X = 0 R × ˙ x × ˙ X
33 eqid mulGrp P = mulGrp P
34 1 6 33 5 13 ply1moncl R Ring x 0 x × ˙ X Base P
35 22 24 34 syl2anc N Fin R Ring M B I N J N x 0 x × ˙ X Base P
36 1 13 4 19 ply10s0 R Ring x × ˙ X Base P 0 R × ˙ x × ˙ X = 0 P
37 22 35 36 syl2anc N Fin R Ring M B I N J N x 0 0 R × ˙ x × ˙ X = 0 P
38 37 adantr N Fin R Ring M B I N J N x 0 coe 1 I M J x = 0 R 0 R × ˙ x × ˙ X = 0 P
39 32 38 eqtrd N Fin R Ring M B I N J N x 0 coe 1 I M J x = 0 R I M decompPMat x J × ˙ x × ˙ X = 0 P
40 39 ex N Fin R Ring M B I N J N x 0 coe 1 I M J x = 0 R I M decompPMat x J × ˙ x × ˙ X = 0 P
41 40 imim2d N Fin R Ring M B I N J N x 0 s < x coe 1 I M J x = 0 R s < x I M decompPMat x J × ˙ x × ˙ X = 0 P
42 41 ralimdva N Fin R Ring M B I N J N x 0 s < x coe 1 I M J x = 0 R x 0 s < x I M decompPMat x J × ˙ x × ˙ X = 0 P
43 42 reximdv N Fin R Ring M B I N J N s 0 x 0 s < x coe 1 I M J x = 0 R s 0 x 0 s < x I M decompPMat x J × ˙ x × ˙ X = 0 P
44 21 43 mpd N Fin R Ring M B I N J N s 0 x 0 s < x I M decompPMat x J × ˙ x × ˙ X = 0 P
45 7 8 12 44 mptnn0fsuppd N Fin R Ring M B I N J N finSupp 0 P n 0 I M decompPMat n J × ˙ n × ˙ X