| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmatcollpw1.p |
|
| 2 |
|
pmatcollpw1.c |
|
| 3 |
|
pmatcollpw1.b |
|
| 4 |
|
pmatcollpw1.m |
|
| 5 |
|
pmatcollpw1.e |
|
| 6 |
|
pmatcollpw1.x |
|
| 7 |
|
simpl2 |
|
| 8 |
|
eqid |
|
| 9 |
|
simprl |
|
| 10 |
|
simprr |
|
| 11 |
|
simpl3 |
|
| 12 |
2 8 3 9 10 11
|
matecld |
|
| 13 |
|
eqid |
|
| 14 |
|
eqid |
|
| 15 |
|
eqid |
|
| 16 |
1 6 8 4 13 14 15
|
ply1coe |
|
| 17 |
7 12 16
|
syl2anc |
|
| 18 |
7
|
adantr |
|
| 19 |
11
|
adantr |
|
| 20 |
|
simpr |
|
| 21 |
|
simpr |
|
| 22 |
21
|
adantr |
|
| 23 |
1 2 3
|
decpmate |
|
| 24 |
18 19 20 22 23
|
syl31anc |
|
| 25 |
24
|
eqcomd |
|
| 26 |
5
|
eqcomi |
|
| 27 |
26
|
oveqi |
|
| 28 |
27
|
a1i |
|
| 29 |
25 28
|
oveq12d |
|
| 30 |
29
|
mpteq2dva |
|
| 31 |
30
|
oveq2d |
|
| 32 |
17 31
|
eqtrd |
|