Metamath Proof Explorer


Theorem pmatcollpw2

Description: Write a polynomial matrix as a sum of matrices whose entries are products of variable powers and constant polynomials collecting like powers. (Contributed by AV, 3-Oct-2019) (Revised by AV, 3-Dec-2019)

Ref Expression
Hypotheses pmatcollpw1.p P = Poly 1 R
pmatcollpw1.c C = N Mat P
pmatcollpw1.b B = Base C
pmatcollpw1.m × ˙ = P
pmatcollpw1.e × ˙ = mulGrp P
pmatcollpw1.x X = var 1 R
Assertion pmatcollpw2 N Fin R Ring M B M = C n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X

Proof

Step Hyp Ref Expression
1 pmatcollpw1.p P = Poly 1 R
2 pmatcollpw1.c C = N Mat P
3 pmatcollpw1.b B = Base C
4 pmatcollpw1.m × ˙ = P
5 pmatcollpw1.e × ˙ = mulGrp P
6 pmatcollpw1.x X = var 1 R
7 1 2 3 4 5 6 pmatcollpw1 N Fin R Ring M B M = i N , j N P n 0 i M decompPMat n j × ˙ n × ˙ X
8 eqid 0 C = 0 C
9 simp1 N Fin R Ring M B N Fin
10 nn0ex 0 V
11 10 a1i N Fin R Ring M B 0 V
12 1 ply1ring R Ring P Ring
13 12 3ad2ant2 N Fin R Ring M B P Ring
14 eqid Base P = Base P
15 9 adantr N Fin R Ring M B n 0 N Fin
16 13 adantr N Fin R Ring M B n 0 P Ring
17 simp1l2 N Fin R Ring M B n 0 i N j N R Ring
18 eqid N Mat R = N Mat R
19 eqid Base R = Base R
20 eqid Base N Mat R = Base N Mat R
21 simp2 N Fin R Ring M B n 0 i N j N i N
22 simp3 N Fin R Ring M B n 0 i N j N j N
23 simp2 N Fin R Ring M B R Ring
24 23 adantr N Fin R Ring M B n 0 R Ring
25 simp3 N Fin R Ring M B M B
26 25 adantr N Fin R Ring M B n 0 M B
27 simpr N Fin R Ring M B n 0 n 0
28 24 26 27 3jca N Fin R Ring M B n 0 R Ring M B n 0
29 28 3ad2ant1 N Fin R Ring M B n 0 i N j N R Ring M B n 0
30 1 2 3 18 20 decpmatcl R Ring M B n 0 M decompPMat n Base N Mat R
31 29 30 syl N Fin R Ring M B n 0 i N j N M decompPMat n Base N Mat R
32 18 19 20 21 22 31 matecld N Fin R Ring M B n 0 i N j N i M decompPMat n j Base R
33 simp1r N Fin R Ring M B n 0 i N j N n 0
34 eqid mulGrp P = mulGrp P
35 19 1 6 4 34 5 14 ply1tmcl R Ring i M decompPMat n j Base R n 0 i M decompPMat n j × ˙ n × ˙ X Base P
36 17 32 33 35 syl3anc N Fin R Ring M B n 0 i N j N i M decompPMat n j × ˙ n × ˙ X Base P
37 2 14 3 15 16 36 matbas2d N Fin R Ring M B n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X B
38 1 2 3 4 5 6 pmatcollpw2lem N Fin R Ring M B finSupp 0 C n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X
39 2 3 8 9 11 13 37 38 matgsum N Fin R Ring M B C n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X = i N , j N P n 0 i M decompPMat n j × ˙ n × ˙ X
40 7 39 eqtr4d N Fin R Ring M B M = C n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X