Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpw1.p |
|
2 |
|
pmatcollpw1.c |
|
3 |
|
pmatcollpw1.b |
|
4 |
|
pmatcollpw1.m |
|
5 |
|
pmatcollpw1.e |
|
6 |
|
pmatcollpw1.x |
|
7 |
1 2 3 4 5 6
|
pmatcollpw1 |
|
8 |
|
eqid |
|
9 |
|
simp1 |
|
10 |
|
nn0ex |
|
11 |
10
|
a1i |
|
12 |
1
|
ply1ring |
|
13 |
12
|
3ad2ant2 |
|
14 |
|
eqid |
|
15 |
9
|
adantr |
|
16 |
13
|
adantr |
|
17 |
|
simp1l2 |
|
18 |
|
eqid |
|
19 |
|
eqid |
|
20 |
|
eqid |
|
21 |
|
simp2 |
|
22 |
|
simp3 |
|
23 |
|
simp2 |
|
24 |
23
|
adantr |
|
25 |
|
simp3 |
|
26 |
25
|
adantr |
|
27 |
|
simpr |
|
28 |
24 26 27
|
3jca |
|
29 |
28
|
3ad2ant1 |
|
30 |
1 2 3 18 20
|
decpmatcl |
|
31 |
29 30
|
syl |
|
32 |
18 19 20 21 22 31
|
matecld |
|
33 |
|
simp1r |
|
34 |
|
eqid |
|
35 |
19 1 6 4 34 5 14
|
ply1tmcl |
|
36 |
17 32 33 35
|
syl3anc |
|
37 |
2 14 3 15 16 36
|
matbas2d |
|
38 |
1 2 3 4 5 6
|
pmatcollpw2lem |
|
39 |
2 3 8 9 11 13 37 38
|
matgsum |
|
40 |
7 39
|
eqtr4d |
|