Metamath Proof Explorer


Theorem pmatcollpw2lem

Description: Lemma for pmatcollpw2 . (Contributed by AV, 3-Oct-2019) (Revised by AV, 3-Dec-2019)

Ref Expression
Hypotheses pmatcollpw1.p P = Poly 1 R
pmatcollpw1.c C = N Mat P
pmatcollpw1.b B = Base C
pmatcollpw1.m × ˙ = P
pmatcollpw1.e × ˙ = mulGrp P
pmatcollpw1.x X = var 1 R
Assertion pmatcollpw2lem N Fin R Ring M B finSupp 0 C n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X

Proof

Step Hyp Ref Expression
1 pmatcollpw1.p P = Poly 1 R
2 pmatcollpw1.c C = N Mat P
3 pmatcollpw1.b B = Base C
4 pmatcollpw1.m × ˙ = P
5 pmatcollpw1.e × ˙ = mulGrp P
6 pmatcollpw1.x X = var 1 R
7 simp1 N Fin R Ring M B N Fin
8 mpoexga N Fin N Fin i N , j N i M decompPMat n j × ˙ n × ˙ X V
9 7 7 8 syl2anc N Fin R Ring M B i N , j N i M decompPMat n j × ˙ n × ˙ X V
10 9 ralrimivw N Fin R Ring M B n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X V
11 eqid n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X = n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X
12 11 fnmpt n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X V n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X Fn 0
13 10 12 syl N Fin R Ring M B n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X Fn 0
14 nn0ex 0 V
15 14 a1i N Fin R Ring M B 0 V
16 fvexd N Fin R Ring M B 0 C V
17 suppvalfn n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X Fn 0 0 V 0 C V n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X supp 0 C = x 0 | n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x 0 C
18 13 15 16 17 syl3anc N Fin R Ring M B n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X supp 0 C = x 0 | n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x 0 C
19 eqid 0 R = 0 R
20 1 2 3 19 pmatcoe1fsupp N Fin R Ring M B y 0 x 0 y < x i N j N coe 1 i M j x = 0 R
21 oveq1 coe 1 i M j x = 0 R coe 1 i M j x × ˙ x × ˙ X = 0 R × ˙ x × ˙ X
22 4 a1i N Fin R Ring M B × ˙ = P
23 1 ply1sca R Ring R = Scalar P
24 23 3ad2ant2 N Fin R Ring M B R = Scalar P
25 24 fveq2d N Fin R Ring M B 0 R = 0 Scalar P
26 eqidd N Fin R Ring M B x × ˙ X = x × ˙ X
27 22 25 26 oveq123d N Fin R Ring M B 0 R × ˙ x × ˙ X = 0 Scalar P P x × ˙ X
28 27 ad3antrrr N Fin R Ring M B x 0 i N j N 0 R × ˙ x × ˙ X = 0 Scalar P P x × ˙ X
29 24 eqcomd N Fin R Ring M B Scalar P = R
30 29 ad3antrrr N Fin R Ring M B x 0 i N j N Scalar P = R
31 30 fveq2d N Fin R Ring M B x 0 i N j N 0 Scalar P = 0 R
32 31 oveq1d N Fin R Ring M B x 0 i N j N 0 Scalar P P x × ˙ X = 0 R P x × ˙ X
33 simpl2 N Fin R Ring M B x 0 R Ring
34 eqid mulGrp P = mulGrp P
35 eqid Base P = Base P
36 1 6 34 5 35 ply1moncl R Ring x 0 x × ˙ X Base P
37 36 3ad2antl2 N Fin R Ring M B x 0 x × ˙ X Base P
38 33 37 jca N Fin R Ring M B x 0 R Ring x × ˙ X Base P
39 38 adantr N Fin R Ring M B x 0 i N R Ring x × ˙ X Base P
40 39 adantr N Fin R Ring M B x 0 i N j N R Ring x × ˙ X Base P
41 eqid P = P
42 1 35 41 19 ply10s0 R Ring x × ˙ X Base P 0 R P x × ˙ X = 0 P
43 40 42 syl N Fin R Ring M B x 0 i N j N 0 R P x × ˙ X = 0 P
44 28 32 43 3eqtrd N Fin R Ring M B x 0 i N j N 0 R × ˙ x × ˙ X = 0 P
45 21 44 sylan9eqr N Fin R Ring M B x 0 i N j N coe 1 i M j x = 0 R coe 1 i M j x × ˙ x × ˙ X = 0 P
46 45 ex N Fin R Ring M B x 0 i N j N coe 1 i M j x = 0 R coe 1 i M j x × ˙ x × ˙ X = 0 P
47 46 anasss N Fin R Ring M B x 0 i N j N coe 1 i M j x = 0 R coe 1 i M j x × ˙ x × ˙ X = 0 P
48 47 ralimdvva N Fin R Ring M B x 0 i N j N coe 1 i M j x = 0 R i N j N coe 1 i M j x × ˙ x × ˙ X = 0 P
49 48 imim2d N Fin R Ring M B x 0 y < x i N j N coe 1 i M j x = 0 R y < x i N j N coe 1 i M j x × ˙ x × ˙ X = 0 P
50 49 ralimdva N Fin R Ring M B x 0 y < x i N j N coe 1 i M j x = 0 R x 0 y < x i N j N coe 1 i M j x × ˙ x × ˙ X = 0 P
51 50 reximdv N Fin R Ring M B y 0 x 0 y < x i N j N coe 1 i M j x = 0 R y 0 x 0 y < x i N j N coe 1 i M j x × ˙ x × ˙ X = 0 P
52 20 51 mpd N Fin R Ring M B y 0 x 0 y < x i N j N coe 1 i M j x × ˙ x × ˙ X = 0 P
53 simpl3 N Fin R Ring M B x 0 M B
54 simpr N Fin R Ring M B x 0 x 0
55 33 53 54 3jca N Fin R Ring M B x 0 R Ring M B x 0
56 1 2 3 decpmate R Ring M B x 0 i N j N i M decompPMat x j = coe 1 i M j x
57 55 56 sylan N Fin R Ring M B x 0 i N j N i M decompPMat x j = coe 1 i M j x
58 57 oveq1d N Fin R Ring M B x 0 i N j N i M decompPMat x j × ˙ x × ˙ X = coe 1 i M j x × ˙ x × ˙ X
59 58 eqeq1d N Fin R Ring M B x 0 i N j N i M decompPMat x j × ˙ x × ˙ X = 0 P coe 1 i M j x × ˙ x × ˙ X = 0 P
60 59 2ralbidva N Fin R Ring M B x 0 i N j N i M decompPMat x j × ˙ x × ˙ X = 0 P i N j N coe 1 i M j x × ˙ x × ˙ X = 0 P
61 60 imbi2d N Fin R Ring M B x 0 y < x i N j N i M decompPMat x j × ˙ x × ˙ X = 0 P y < x i N j N coe 1 i M j x × ˙ x × ˙ X = 0 P
62 61 ralbidva N Fin R Ring M B x 0 y < x i N j N i M decompPMat x j × ˙ x × ˙ X = 0 P x 0 y < x i N j N coe 1 i M j x × ˙ x × ˙ X = 0 P
63 62 rexbidv N Fin R Ring M B y 0 x 0 y < x i N j N i M decompPMat x j × ˙ x × ˙ X = 0 P y 0 x 0 y < x i N j N coe 1 i M j x × ˙ x × ˙ X = 0 P
64 52 63 mpbird N Fin R Ring M B y 0 x 0 y < x i N j N i M decompPMat x j × ˙ x × ˙ X = 0 P
65 eqid N = N
66 65 biantrur i N N = N j N i M decompPMat x j × ˙ x × ˙ X = 0 P N = N i N N = N j N i M decompPMat x j × ˙ x × ˙ X = 0 P
67 65 biantrur j N i M decompPMat x j × ˙ x × ˙ X = 0 P N = N j N i M decompPMat x j × ˙ x × ˙ X = 0 P
68 67 bicomi N = N j N i M decompPMat x j × ˙ x × ˙ X = 0 P j N i M decompPMat x j × ˙ x × ˙ X = 0 P
69 68 ralbii i N N = N j N i M decompPMat x j × ˙ x × ˙ X = 0 P i N j N i M decompPMat x j × ˙ x × ˙ X = 0 P
70 66 69 bitr3i N = N i N N = N j N i M decompPMat x j × ˙ x × ˙ X = 0 P i N j N i M decompPMat x j × ˙ x × ˙ X = 0 P
71 70 a1i N Fin R Ring M B N = N i N N = N j N i M decompPMat x j × ˙ x × ˙ X = 0 P i N j N i M decompPMat x j × ˙ x × ˙ X = 0 P
72 71 imbi2d N Fin R Ring M B y < x N = N i N N = N j N i M decompPMat x j × ˙ x × ˙ X = 0 P y < x i N j N i M decompPMat x j × ˙ x × ˙ X = 0 P
73 72 rexralbidv N Fin R Ring M B y 0 x 0 y < x N = N i N N = N j N i M decompPMat x j × ˙ x × ˙ X = 0 P y 0 x 0 y < x i N j N i M decompPMat x j × ˙ x × ˙ X = 0 P
74 64 73 mpbird N Fin R Ring M B y 0 x 0 y < x N = N i N N = N j N i M decompPMat x j × ˙ x × ˙ X = 0 P
75 mpoeq123 N = N i N N = N j N i M decompPMat x j × ˙ x × ˙ X = 0 P i N , j N i M decompPMat x j × ˙ x × ˙ X = i N , j N 0 P
76 75 imim2i y < x N = N i N N = N j N i M decompPMat x j × ˙ x × ˙ X = 0 P y < x i N , j N i M decompPMat x j × ˙ x × ˙ X = i N , j N 0 P
77 76 ralimi x 0 y < x N = N i N N = N j N i M decompPMat x j × ˙ x × ˙ X = 0 P x 0 y < x i N , j N i M decompPMat x j × ˙ x × ˙ X = i N , j N 0 P
78 77 reximi y 0 x 0 y < x N = N i N N = N j N i M decompPMat x j × ˙ x × ˙ X = 0 P y 0 x 0 y < x i N , j N i M decompPMat x j × ˙ x × ˙ X = i N , j N 0 P
79 74 78 syl N Fin R Ring M B y 0 x 0 y < x i N , j N i M decompPMat x j × ˙ x × ˙ X = i N , j N 0 P
80 eqidd N Fin R Ring M B x 0 n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X = n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X
81 oveq2 n = x M decompPMat n = M decompPMat x
82 81 oveqd n = x i M decompPMat n j = i M decompPMat x j
83 oveq1 n = x n × ˙ X = x × ˙ X
84 82 83 oveq12d n = x i M decompPMat n j × ˙ n × ˙ X = i M decompPMat x j × ˙ x × ˙ X
85 84 mpoeq3dv n = x i N , j N i M decompPMat n j × ˙ n × ˙ X = i N , j N i M decompPMat x j × ˙ x × ˙ X
86 85 adantl N Fin R Ring M B x 0 n = x i N , j N i M decompPMat n j × ˙ n × ˙ X = i N , j N i M decompPMat x j × ˙ x × ˙ X
87 id N Fin N Fin
88 87 ancri N Fin N Fin N Fin
89 88 3ad2ant1 N Fin R Ring M B N Fin N Fin
90 89 adantr N Fin R Ring M B x 0 N Fin N Fin
91 mpoexga N Fin N Fin i N , j N i M decompPMat x j × ˙ x × ˙ X V
92 90 91 syl N Fin R Ring M B x 0 i N , j N i M decompPMat x j × ˙ x × ˙ X V
93 80 86 54 92 fvmptd N Fin R Ring M B x 0 n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x = i N , j N i M decompPMat x j × ˙ x × ˙ X
94 1 ply1ring R Ring P Ring
95 94 anim2i N Fin R Ring N Fin P Ring
96 95 3adant3 N Fin R Ring M B N Fin P Ring
97 96 adantr N Fin R Ring M B x 0 N Fin P Ring
98 eqid 0 P = 0 P
99 2 98 mat0op N Fin P Ring 0 C = i N , j N 0 P
100 97 99 syl N Fin R Ring M B x 0 0 C = i N , j N 0 P
101 93 100 eqeq12d N Fin R Ring M B x 0 n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x = 0 C i N , j N i M decompPMat x j × ˙ x × ˙ X = i N , j N 0 P
102 101 imbi2d N Fin R Ring M B x 0 y < x n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x = 0 C y < x i N , j N i M decompPMat x j × ˙ x × ˙ X = i N , j N 0 P
103 102 ralbidva N Fin R Ring M B x 0 y < x n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x = 0 C x 0 y < x i N , j N i M decompPMat x j × ˙ x × ˙ X = i N , j N 0 P
104 103 rexbidv N Fin R Ring M B y 0 x 0 y < x n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x = 0 C y 0 x 0 y < x i N , j N i M decompPMat x j × ˙ x × ˙ X = i N , j N 0 P
105 79 104 mpbird N Fin R Ring M B y 0 x 0 y < x n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x = 0 C
106 nne ¬ n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x 0 C n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x = 0 C
107 106 imbi2i y < x ¬ n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x 0 C y < x n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x = 0 C
108 107 ralbii x 0 y < x ¬ n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x 0 C x 0 y < x n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x = 0 C
109 108 rexbii y 0 x 0 y < x ¬ n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x 0 C y 0 x 0 y < x n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x = 0 C
110 105 109 sylibr N Fin R Ring M B y 0 x 0 y < x ¬ n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x 0 C
111 rabssnn0fi x 0 | n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x 0 C Fin y 0 x 0 y < x ¬ n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x 0 C
112 110 111 sylibr N Fin R Ring M B x 0 | n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X x 0 C Fin
113 18 112 eqeltrd N Fin R Ring M B n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X supp 0 C Fin
114 funmpt Fun n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X
115 14 mptex n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X V
116 funisfsupp Fun n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X V 0 C V finSupp 0 C n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X supp 0 C Fin
117 114 115 16 116 mp3an12i N Fin R Ring M B finSupp 0 C n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X supp 0 C Fin
118 113 117 mpbird N Fin R Ring M B finSupp 0 C n 0 i N , j N i M decompPMat n j × ˙ n × ˙ X