Metamath Proof Explorer


Theorem pmatcollpw3fi

Description: Write a polynomial matrix (over a commutative ring) as a finite sum of products of variable powers and constant matrices with scalar entries. (Contributed by AV, 4-Nov-2019) (Revised by AV, 4-Dec-2019) (Proof shortened by AV, 8-Dec-2019)

Ref Expression
Hypotheses pmatcollpw.p P = Poly 1 R
pmatcollpw.c C = N Mat P
pmatcollpw.b B = Base C
pmatcollpw.m ˙ = C
pmatcollpw.e × ˙ = mulGrp P
pmatcollpw.x X = var 1 R
pmatcollpw.t T = N matToPolyMat R
pmatcollpw3.a A = N Mat R
pmatcollpw3.d D = Base A
Assertion pmatcollpw3fi N Fin R CRing M B s 0 f D 0 s M = C n = 0 s n × ˙ X ˙ T f n

Proof

Step Hyp Ref Expression
1 pmatcollpw.p P = Poly 1 R
2 pmatcollpw.c C = N Mat P
3 pmatcollpw.b B = Base C
4 pmatcollpw.m ˙ = C
5 pmatcollpw.e × ˙ = mulGrp P
6 pmatcollpw.x X = var 1 R
7 pmatcollpw.t T = N matToPolyMat R
8 pmatcollpw3.a A = N Mat R
9 pmatcollpw3.d D = Base A
10 1 2 3 4 5 6 7 pmatcollpwfi N Fin R CRing M B s 0 M = C n = 0 s n × ˙ X ˙ T M decompPMat n
11 elnn0uz s 0 s 0
12 fzn0 0 s s 0
13 11 12 sylbb2 s 0 0 s
14 fz0ssnn0 0 s 0
15 13 14 jctil s 0 0 s 0 0 s
16 1 2 3 4 5 6 7 8 9 pmatcollpw3lem N Fin R CRing M B 0 s 0 0 s M = C n = 0 s n × ˙ X ˙ T M decompPMat n f D 0 s M = C n = 0 s n × ˙ X ˙ T f n
17 15 16 sylan2 N Fin R CRing M B s 0 M = C n = 0 s n × ˙ X ˙ T M decompPMat n f D 0 s M = C n = 0 s n × ˙ X ˙ T f n
18 17 reximdva N Fin R CRing M B s 0 M = C n = 0 s n × ˙ X ˙ T M decompPMat n s 0 f D 0 s M = C n = 0 s n × ˙ X ˙ T f n
19 10 18 mpd N Fin R CRing M B s 0 f D 0 s M = C n = 0 s n × ˙ X ˙ T f n