Metamath Proof Explorer


Theorem pmatcollpw3fi1

Description: Write a polynomial matrix (over a commutative ring) as a finite sum of (at least two) products of variable powers and constant matrices with scalar entries. (Contributed by AV, 6-Nov-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pmatcollpw.p P = Poly 1 R
pmatcollpw.c C = N Mat P
pmatcollpw.b B = Base C
pmatcollpw.m ˙ = C
pmatcollpw.e × ˙ = mulGrp P
pmatcollpw.x X = var 1 R
pmatcollpw.t T = N matToPolyMat R
pmatcollpw3.a A = N Mat R
pmatcollpw3.d D = Base A
Assertion pmatcollpw3fi1 N Fin R CRing M B s f D 0 s M = C n = 0 s n × ˙ X ˙ T f n

Proof

Step Hyp Ref Expression
1 pmatcollpw.p P = Poly 1 R
2 pmatcollpw.c C = N Mat P
3 pmatcollpw.b B = Base C
4 pmatcollpw.m ˙ = C
5 pmatcollpw.e × ˙ = mulGrp P
6 pmatcollpw.x X = var 1 R
7 pmatcollpw.t T = N matToPolyMat R
8 pmatcollpw3.a A = N Mat R
9 pmatcollpw3.d D = Base A
10 1 2 3 4 5 6 7 8 9 pmatcollpw3fi N Fin R CRing M B s 0 f D 0 s M = C n = 0 s n × ˙ X ˙ T f n
11 df-n0 0 = 0
12 11 rexeqi s 0 f D 0 s M = C n = 0 s n × ˙ X ˙ T f n s 0 f D 0 s M = C n = 0 s n × ˙ X ˙ T f n
13 rexun s 0 f D 0 s M = C n = 0 s n × ˙ X ˙ T f n s f D 0 s M = C n = 0 s n × ˙ X ˙ T f n s 0 f D 0 s M = C n = 0 s n × ˙ X ˙ T f n
14 12 13 bitri s 0 f D 0 s M = C n = 0 s n × ˙ X ˙ T f n s f D 0 s M = C n = 0 s n × ˙ X ˙ T f n s 0 f D 0 s M = C n = 0 s n × ˙ X ˙ T f n
15 c0ex 0 V
16 oveq2 s = 0 0 s = 0 0
17 0z 0
18 fzsn 0 0 0 = 0
19 17 18 mp1i s = 0 0 0 = 0
20 16 19 eqtrd s = 0 0 s = 0
21 20 oveq2d s = 0 D 0 s = D 0
22 20 mpteq1d s = 0 n 0 s n × ˙ X ˙ T f n = n 0 n × ˙ X ˙ T f n
23 22 oveq2d s = 0 C n = 0 s n × ˙ X ˙ T f n = C n 0 n × ˙ X ˙ T f n
24 23 eqeq2d s = 0 M = C n = 0 s n × ˙ X ˙ T f n M = C n 0 n × ˙ X ˙ T f n
25 21 24 rexeqbidv s = 0 f D 0 s M = C n = 0 s n × ˙ X ˙ T f n f D 0 M = C n 0 n × ˙ X ˙ T f n
26 15 25 rexsn s 0 f D 0 s M = C n = 0 s n × ˙ X ˙ T f n f D 0 M = C n 0 n × ˙ X ˙ T f n
27 1 2 3 4 5 6 7 8 9 pmatcollpw3fi1lem2 N Fin R CRing M B f D 0 M = C n 0 n × ˙ X ˙ T f n s f D 0 s M = C n = 0 s n × ˙ X ˙ T f n
28 27 com12 f D 0 M = C n 0 n × ˙ X ˙ T f n N Fin R CRing M B s f D 0 s M = C n = 0 s n × ˙ X ˙ T f n
29 26 28 sylbi s 0 f D 0 s M = C n = 0 s n × ˙ X ˙ T f n N Fin R CRing M B s f D 0 s M = C n = 0 s n × ˙ X ˙ T f n
30 29 jao1i s f D 0 s M = C n = 0 s n × ˙ X ˙ T f n s 0 f D 0 s M = C n = 0 s n × ˙ X ˙ T f n N Fin R CRing M B s f D 0 s M = C n = 0 s n × ˙ X ˙ T f n
31 14 30 sylbi s 0 f D 0 s M = C n = 0 s n × ˙ X ˙ T f n N Fin R CRing M B s f D 0 s M = C n = 0 s n × ˙ X ˙ T f n
32 10 31 mpcom N Fin R CRing M B s f D 0 s M = C n = 0 s n × ˙ X ˙ T f n