Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpw.p |
|
2 |
|
pmatcollpw.c |
|
3 |
|
pmatcollpw.b |
|
4 |
|
pmatcollpw.m |
|
5 |
|
pmatcollpw.e |
|
6 |
|
pmatcollpw.x |
|
7 |
|
pmatcollpw.t |
|
8 |
|
pmatcollpw3.a |
|
9 |
|
pmatcollpw3.d |
|
10 |
|
pmatcollpw3fi1lem1.0 |
|
11 |
|
pmatcollpw3fi1lem1.h |
|
12 |
|
simpr |
|
13 |
1 2
|
pmatring |
|
14 |
|
ringmnd |
|
15 |
13 14
|
syl |
|
16 |
15
|
adantr |
|
17 |
|
ringcmn |
|
18 |
13 17
|
syl |
|
19 |
18
|
adantr |
|
20 |
|
snfi |
|
21 |
20
|
a1i |
|
22 |
|
simplll |
|
23 |
|
simpllr |
|
24 |
|
elmapi |
|
25 |
24
|
adantl |
|
26 |
25
|
ffvelrnda |
|
27 |
|
elsni |
|
28 |
|
0nn0 |
|
29 |
27 28
|
eqeltrdi |
|
30 |
29
|
adantl |
|
31 |
8 9 7 1 2 3 4 5 6
|
mat2pmatscmxcl |
|
32 |
22 23 26 30 31
|
syl22anc |
|
33 |
32
|
ralrimiva |
|
34 |
3 19 21 33
|
gsummptcl |
|
35 |
|
eqid |
|
36 |
|
eqid |
|
37 |
3 35 36
|
mndrid |
|
38 |
16 34 37
|
syl2anc |
|
39 |
|
fz0sn |
|
40 |
39
|
eqcomi |
|
41 |
40
|
a1i |
|
42 |
|
simpr |
|
43 |
27
|
ad2antlr |
|
44 |
42 43
|
eqtrd |
|
45 |
44
|
iftrued |
|
46 |
|
fveq2 |
|
47 |
46
|
eqcomd |
|
48 |
27 47
|
syl |
|
49 |
48
|
ad2antlr |
|
50 |
45 49
|
eqtrd |
|
51 |
|
1nn0 |
|
52 |
51
|
a1i |
|
53 |
|
nn0uz |
|
54 |
52 53
|
eleqtrdi |
|
55 |
|
eluzfz1 |
|
56 |
54 55
|
syl |
|
57 |
|
eleq1 |
|
58 |
56 57
|
mpbird |
|
59 |
27 58
|
syl |
|
60 |
59
|
adantl |
|
61 |
|
ffvelrn |
|
62 |
61
|
ex |
|
63 |
24 62
|
syl |
|
64 |
63
|
adantl |
|
65 |
64
|
imp |
|
66 |
11 50 60 65
|
fvmptd2 |
|
67 |
66
|
eqcomd |
|
68 |
67
|
fveq2d |
|
69 |
68
|
oveq2d |
|
70 |
41 69
|
mpteq12dva |
|
71 |
70
|
oveq2d |
|
72 |
|
ovexd |
|
73 |
3 36
|
mndidcl |
|
74 |
15 73
|
syl |
|
75 |
74
|
adantr |
|
76 |
|
0p1e1 |
|
77 |
76
|
eqeq2i |
|
78 |
|
ax-1ne0 |
|
79 |
78
|
neii |
|
80 |
|
eqeq1 |
|
81 |
79 80
|
mtbiri |
|
82 |
77 81
|
sylbi |
|
83 |
82
|
ad2antlr |
|
84 |
|
eqeq1 |
|
85 |
84
|
notbid |
|
86 |
85
|
adantl |
|
87 |
83 86
|
mpbird |
|
88 |
87
|
iffalsed |
|
89 |
88 10
|
eqtrdi |
|
90 |
51
|
a1i |
|
91 |
90 53
|
eleqtrdi |
|
92 |
|
eluzfz2 |
|
93 |
91 92
|
syl |
|
94 |
|
eleq1 |
|
95 |
93 94
|
mpbird |
|
96 |
77 95
|
sylbi |
|
97 |
96
|
adantl |
|
98 |
|
fvexd |
|
99 |
11 89 97 98
|
fvmptd2 |
|
100 |
99
|
fveq2d |
|
101 |
8
|
fveq2i |
|
102 |
2
|
fveq2i |
|
103 |
7 1 101 102
|
0mat2pmat |
|
104 |
103
|
ancoms |
|
105 |
104
|
ad2antrr |
|
106 |
100 105
|
eqtrd |
|
107 |
106
|
oveq2d |
|
108 |
1 2
|
pmatlmod |
|
109 |
108
|
ad2antrr |
|
110 |
|
simpllr |
|
111 |
|
eleq1 |
|
112 |
90 111
|
mpbird |
|
113 |
77 112
|
sylbi |
|
114 |
113
|
adantl |
|
115 |
|
eqid |
|
116 |
|
eqid |
|
117 |
1 6 115 5 116
|
ply1moncl |
|
118 |
110 114 117
|
syl2anc |
|
119 |
1
|
ply1ring |
|
120 |
2
|
matsca2 |
|
121 |
119 120
|
sylan2 |
|
122 |
121
|
eqcomd |
|
123 |
122
|
fveq2d |
|
124 |
123
|
eleq2d |
|
125 |
124
|
ad2antrr |
|
126 |
118 125
|
mpbird |
|
127 |
|
eqid |
|
128 |
|
eqid |
|
129 |
127 4 128 36
|
lmodvs0 |
|
130 |
109 126 129
|
syl2anc |
|
131 |
107 130
|
eqtrd |
|
132 |
3 16 72 75 131
|
gsumsnd |
|
133 |
132
|
eqcomd |
|
134 |
71 133
|
oveq12d |
|
135 |
38 134
|
eqtr3d |
|
136 |
135
|
adantr |
|
137 |
12 136
|
eqtrd |
|
138 |
137
|
3impa |
|
139 |
28
|
a1i |
|
140 |
|
simplll |
|
141 |
|
simpllr |
|
142 |
|
id |
|
143 |
|
c0ex |
|
144 |
143
|
snid |
|
145 |
144
|
a1i |
|
146 |
142 145
|
ffvelrnd |
|
147 |
24 146
|
syl |
|
148 |
147
|
ad2antlr |
|
149 |
8
|
matring |
|
150 |
9 10
|
ring0cl |
|
151 |
149 150
|
syl |
|
152 |
151
|
ad2antrr |
|
153 |
148 152
|
ifcld |
|
154 |
153 11
|
fmptd |
|
155 |
76
|
oveq2i |
|
156 |
155
|
feq2i |
|
157 |
154 156
|
sylibr |
|
158 |
157
|
ffvelrnda |
|
159 |
|
elfznn0 |
|
160 |
159
|
adantl |
|
161 |
8 9 7 1 2 3 4 5 6
|
mat2pmatscmxcl |
|
162 |
140 141 158 160 161
|
syl22anc |
|
163 |
3 35 19 139 162
|
gsummptfzsplit |
|
164 |
163
|
3adant3 |
|
165 |
138 164
|
eqtr4d |
|
166 |
155
|
mpteq1i |
|
167 |
166
|
oveq2i |
|
168 |
165 167
|
eqtrdi |
|