Metamath Proof Explorer


Theorem pmatcollpw3fi1lem2

Description: Lemma 2 for pmatcollpw3fi1 . (Contributed by AV, 6-Nov-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pmatcollpw.p P = Poly 1 R
pmatcollpw.c C = N Mat P
pmatcollpw.b B = Base C
pmatcollpw.m ˙ = C
pmatcollpw.e × ˙ = mulGrp P
pmatcollpw.x X = var 1 R
pmatcollpw.t T = N matToPolyMat R
pmatcollpw3.a A = N Mat R
pmatcollpw3.d D = Base A
Assertion pmatcollpw3fi1lem2 N Fin R CRing M B f D 0 M = C n 0 n × ˙ X ˙ T f n s f D 0 s M = C n = 0 s n × ˙ X ˙ T f n

Proof

Step Hyp Ref Expression
1 pmatcollpw.p P = Poly 1 R
2 pmatcollpw.c C = N Mat P
3 pmatcollpw.b B = Base C
4 pmatcollpw.m ˙ = C
5 pmatcollpw.e × ˙ = mulGrp P
6 pmatcollpw.x X = var 1 R
7 pmatcollpw.t T = N matToPolyMat R
8 pmatcollpw3.a A = N Mat R
9 pmatcollpw3.d D = Base A
10 fveq1 f = g f n = g n
11 10 fveq2d f = g T f n = T g n
12 11 oveq2d f = g n × ˙ X ˙ T f n = n × ˙ X ˙ T g n
13 12 mpteq2dv f = g n 0 n × ˙ X ˙ T f n = n 0 n × ˙ X ˙ T g n
14 13 oveq2d f = g C n 0 n × ˙ X ˙ T f n = C n 0 n × ˙ X ˙ T g n
15 14 eqeq2d f = g M = C n 0 n × ˙ X ˙ T f n M = C n 0 n × ˙ X ˙ T g n
16 15 cbvrexvw f D 0 M = C n 0 n × ˙ X ˙ T f n g D 0 M = C n 0 n × ˙ X ˙ T g n
17 crngring R CRing R Ring
18 17 anim2i N Fin R CRing N Fin R Ring
19 18 3adant3 N Fin R CRing M B N Fin R Ring
20 19 ad2antrr N Fin R CRing M B g D 0 M = C n 0 n × ˙ X ˙ T g n N Fin R Ring
21 simplr N Fin R CRing M B g D 0 M = C n 0 n × ˙ X ˙ T g n g D 0
22 simpr N Fin R CRing M B g D 0 M = C n 0 n × ˙ X ˙ T g n M = C n 0 n × ˙ X ˙ T g n
23 eqid 0 A = 0 A
24 eqid l 0 1 if l = 0 g 0 0 A = l 0 1 if l = 0 g 0 0 A
25 1 2 3 4 5 6 7 8 9 23 24 pmatcollpw3fi1lem1 N Fin R Ring g D 0 M = C n 0 n × ˙ X ˙ T g n M = C n = 0 1 n × ˙ X ˙ T l 0 1 if l = 0 g 0 0 A n
26 20 21 22 25 syl3anc N Fin R CRing M B g D 0 M = C n 0 n × ˙ X ˙ T g n M = C n = 0 1 n × ˙ X ˙ T l 0 1 if l = 0 g 0 0 A n
27 1nn 1
28 27 a1i N Fin R CRing M B g D 0 M = C n 0 n × ˙ X ˙ T g n M = C n = 0 1 n × ˙ X ˙ T l 0 1 if l = 0 g 0 0 A n 1
29 oveq2 s = 1 0 s = 0 1
30 29 oveq2d s = 1 D 0 s = D 0 1
31 29 mpteq1d s = 1 n 0 s n × ˙ X ˙ T f n = n 0 1 n × ˙ X ˙ T f n
32 31 oveq2d s = 1 C n = 0 s n × ˙ X ˙ T f n = C n = 0 1 n × ˙ X ˙ T f n
33 32 eqeq2d s = 1 M = C n = 0 s n × ˙ X ˙ T f n M = C n = 0 1 n × ˙ X ˙ T f n
34 30 33 rexeqbidv s = 1 f D 0 s M = C n = 0 s n × ˙ X ˙ T f n f D 0 1 M = C n = 0 1 n × ˙ X ˙ T f n
35 34 adantl N Fin R CRing M B g D 0 M = C n 0 n × ˙ X ˙ T g n M = C n = 0 1 n × ˙ X ˙ T l 0 1 if l = 0 g 0 0 A n s = 1 f D 0 s M = C n = 0 s n × ˙ X ˙ T f n f D 0 1 M = C n = 0 1 n × ˙ X ˙ T f n
36 elmapi g D 0 g : 0 D
37 c0ex 0 V
38 37 snid 0 0
39 38 a1i l 0 1 0 0
40 ffvelrn g : 0 D 0 0 g 0 D
41 39 40 sylan2 g : 0 D l 0 1 g 0 D
42 41 ex g : 0 D l 0 1 g 0 D
43 36 42 syl g D 0 l 0 1 g 0 D
44 43 adantl N Fin R CRing M B g D 0 l 0 1 g 0 D
45 44 imp N Fin R CRing M B g D 0 l 0 1 g 0 D
46 8 matring N Fin R Ring A Ring
47 17 46 sylan2 N Fin R CRing A Ring
48 47 3adant3 N Fin R CRing M B A Ring
49 9 23 ring0cl A Ring 0 A D
50 48 49 syl N Fin R CRing M B 0 A D
51 50 ad2antrr N Fin R CRing M B g D 0 l 0 1 0 A D
52 45 51 ifcld N Fin R CRing M B g D 0 l 0 1 if l = 0 g 0 0 A D
53 52 fmpttd N Fin R CRing M B g D 0 l 0 1 if l = 0 g 0 0 A : 0 1 D
54 9 fvexi D V
55 ovex 0 1 V
56 54 55 pm3.2i D V 0 1 V
57 elmapg D V 0 1 V l 0 1 if l = 0 g 0 0 A D 0 1 l 0 1 if l = 0 g 0 0 A : 0 1 D
58 56 57 mp1i N Fin R CRing M B g D 0 l 0 1 if l = 0 g 0 0 A D 0 1 l 0 1 if l = 0 g 0 0 A : 0 1 D
59 53 58 mpbird N Fin R CRing M B g D 0 l 0 1 if l = 0 g 0 0 A D 0 1
60 59 adantr N Fin R CRing M B g D 0 M = C n 0 n × ˙ X ˙ T g n l 0 1 if l = 0 g 0 0 A D 0 1
61 fveq1 f = l 0 1 if l = 0 g 0 0 A f n = l 0 1 if l = 0 g 0 0 A n
62 61 fveq2d f = l 0 1 if l = 0 g 0 0 A T f n = T l 0 1 if l = 0 g 0 0 A n
63 62 oveq2d f = l 0 1 if l = 0 g 0 0 A n × ˙ X ˙ T f n = n × ˙ X ˙ T l 0 1 if l = 0 g 0 0 A n
64 63 mpteq2dv f = l 0 1 if l = 0 g 0 0 A n 0 1 n × ˙ X ˙ T f n = n 0 1 n × ˙ X ˙ T l 0 1 if l = 0 g 0 0 A n
65 64 oveq2d f = l 0 1 if l = 0 g 0 0 A C n = 0 1 n × ˙ X ˙ T f n = C n = 0 1 n × ˙ X ˙ T l 0 1 if l = 0 g 0 0 A n
66 65 eqeq2d f = l 0 1 if l = 0 g 0 0 A M = C n = 0 1 n × ˙ X ˙ T f n M = C n = 0 1 n × ˙ X ˙ T l 0 1 if l = 0 g 0 0 A n
67 66 adantl N Fin R CRing M B g D 0 M = C n 0 n × ˙ X ˙ T g n f = l 0 1 if l = 0 g 0 0 A M = C n = 0 1 n × ˙ X ˙ T f n M = C n = 0 1 n × ˙ X ˙ T l 0 1 if l = 0 g 0 0 A n
68 60 67 rspcedv N Fin R CRing M B g D 0 M = C n 0 n × ˙ X ˙ T g n M = C n = 0 1 n × ˙ X ˙ T l 0 1 if l = 0 g 0 0 A n f D 0 1 M = C n = 0 1 n × ˙ X ˙ T f n
69 68 imp N Fin R CRing M B g D 0 M = C n 0 n × ˙ X ˙ T g n M = C n = 0 1 n × ˙ X ˙ T l 0 1 if l = 0 g 0 0 A n f D 0 1 M = C n = 0 1 n × ˙ X ˙ T f n
70 28 35 69 rspcedvd N Fin R CRing M B g D 0 M = C n 0 n × ˙ X ˙ T g n M = C n = 0 1 n × ˙ X ˙ T l 0 1 if l = 0 g 0 0 A n s f D 0 s M = C n = 0 s n × ˙ X ˙ T f n
71 26 70 mpdan N Fin R CRing M B g D 0 M = C n 0 n × ˙ X ˙ T g n s f D 0 s M = C n = 0 s n × ˙ X ˙ T f n
72 71 rexlimdva2 N Fin R CRing M B g D 0 M = C n 0 n × ˙ X ˙ T g n s f D 0 s M = C n = 0 s n × ˙ X ˙ T f n
73 16 72 syl5bi N Fin R CRing M B f D 0 M = C n 0 n × ˙ X ˙ T f n s f D 0 s M = C n = 0 s n × ˙ X ˙ T f n