Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpw.p |
|
2 |
|
pmatcollpw.c |
|
3 |
|
pmatcollpw.b |
|
4 |
|
pmatcollpw.m |
|
5 |
|
pmatcollpw.e |
|
6 |
|
pmatcollpw.x |
|
7 |
|
pmatcollpw.t |
|
8 |
1
|
ply1assa |
|
9 |
8
|
3ad2ant2 |
|
10 |
9
|
adantr |
|
11 |
10
|
3ad2ant1 |
|
12 |
|
eqid |
|
13 |
|
eqid |
|
14 |
|
eqid |
|
15 |
|
simp2 |
|
16 |
|
simp3 |
|
17 |
|
simp2 |
|
18 |
17
|
adantr |
|
19 |
|
simp3 |
|
20 |
19
|
adantr |
|
21 |
|
simpr |
|
22 |
1 2 3 12 14
|
decpmatcl |
|
23 |
18 20 21 22
|
syl3anc |
|
24 |
23
|
3ad2ant1 |
|
25 |
12 13 14 15 16 24
|
matecld |
|
26 |
|
crngring |
|
27 |
26
|
3ad2ant2 |
|
28 |
1
|
ply1sca |
|
29 |
27 28
|
syl |
|
30 |
29
|
eqcomd |
|
31 |
30
|
fveq2d |
|
32 |
31
|
eleq2d |
|
33 |
32
|
adantr |
|
34 |
33
|
3ad2ant1 |
|
35 |
25 34
|
mpbird |
|
36 |
|
eqid |
|
37 |
|
eqid |
|
38 |
1 6 36 5 37
|
ply1moncl |
|
39 |
27 38
|
sylan |
|
40 |
39
|
3ad2ant1 |
|
41 |
|
eqid |
|
42 |
|
eqid |
|
43 |
|
eqid |
|
44 |
|
eqid |
|
45 |
|
eqid |
|
46 |
41 42 43 37 44 45
|
asclmul2 |
|
47 |
11 35 40 46
|
syl3anc |
|
48 |
|
eqidd |
|
49 |
|
oveq12 |
|
50 |
49
|
fveq2d |
|
51 |
50
|
adantl |
|
52 |
|
fvexd |
|
53 |
48 51 15 16 52
|
ovmpod |
|
54 |
53
|
eqcomd |
|
55 |
54
|
oveq2d |
|
56 |
47 55
|
eqtr3d |
|
57 |
1
|
ply1ring |
|
58 |
26 57
|
syl |
|
59 |
58
|
3ad2ant2 |
|
60 |
59
|
adantr |
|
61 |
60
|
3ad2ant1 |
|
62 |
|
simpl1 |
|
63 |
18 26
|
syl |
|
64 |
63
|
3ad2ant1 |
|
65 |
|
simp2 |
|
66 |
|
simp3 |
|
67 |
23
|
3ad2ant1 |
|
68 |
12 13 14 65 66 67
|
matecld |
|
69 |
1 41 13 37
|
ply1sclcl |
|
70 |
64 68 69
|
syl2anc |
|
71 |
2 37 3 62 60 70
|
matbas2d |
|
72 |
39 71
|
jca |
|
73 |
72
|
3ad2ant1 |
|
74 |
15 16
|
jca |
|
75 |
2 3 37 4 44
|
matvscacell |
|
76 |
61 73 74 75
|
syl3anc |
|
77 |
27
|
adantr |
|
78 |
7 12 14 1 41
|
mat2pmatval |
|
79 |
62 77 23 78
|
syl3anc |
|
80 |
79
|
eqcomd |
|
81 |
80
|
oveq2d |
|
82 |
81
|
oveqd |
|
83 |
82
|
3ad2ant1 |
|
84 |
56 76 83
|
3eqtr2d |
|