Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpwscmat.p |
|
2 |
|
pmatcollpwscmat.c |
|
3 |
|
pmatcollpwscmat.b |
|
4 |
|
pmatcollpwscmat.m1 |
|
5 |
|
pmatcollpwscmat.e1 |
|
6 |
|
pmatcollpwscmat.x |
|
7 |
|
pmatcollpwscmat.t |
|
8 |
|
pmatcollpwscmat.a |
|
9 |
|
pmatcollpwscmat.d |
|
10 |
|
pmatcollpwscmat.u |
|
11 |
|
pmatcollpwscmat.k |
|
12 |
|
pmatcollpwscmat.e2 |
|
13 |
|
pmatcollpwscmat.s |
|
14 |
|
pmatcollpwscmat.1 |
|
15 |
|
pmatcollpwscmat.m2 |
|
16 |
|
crngring |
|
17 |
1 2 3 12 4 14
|
1pmatscmul |
|
18 |
15 17
|
eqeltrid |
|
19 |
16 18
|
syl3an2 |
|
20 |
1 2 3 4 5 6 7
|
pmatcollpw |
|
21 |
19 20
|
syld3an3 |
|
22 |
16
|
anim2i |
|
23 |
22
|
3adant3 |
|
24 |
|
simp3 |
|
25 |
24
|
anim1ci |
|
26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pmatcollpwscmatlem2 |
|
27 |
23 25 26
|
syl2an2r |
|
28 |
27
|
oveq2d |
|
29 |
28
|
mpteq2dva |
|
30 |
29
|
oveq2d |
|
31 |
21 30
|
eqtrd |
|