Metamath Proof Explorer


Theorem pmatcollpwscmat

Description: Write a scalar matrix over polynomials (over a commutative ring) as a sum of the product of variable powers and constant scalar matrices with scalar entries. (Contributed by AV, 2-Nov-2019) (Revised by AV, 4-Dec-2019)

Ref Expression
Hypotheses pmatcollpwscmat.p P = Poly 1 R
pmatcollpwscmat.c C = N Mat P
pmatcollpwscmat.b B = Base C
pmatcollpwscmat.m1 ˙ = C
pmatcollpwscmat.e1 × ˙ = mulGrp P
pmatcollpwscmat.x X = var 1 R
pmatcollpwscmat.t T = N matToPolyMat R
pmatcollpwscmat.a A = N Mat R
pmatcollpwscmat.d D = Base A
pmatcollpwscmat.u U = algSc P
pmatcollpwscmat.k K = Base R
pmatcollpwscmat.e2 E = Base P
pmatcollpwscmat.s S = algSc P
pmatcollpwscmat.1 1 ˙ = 1 C
pmatcollpwscmat.m2 M = Q ˙ 1 ˙
Assertion pmatcollpwscmat N Fin R CRing Q E M = C n 0 n × ˙ X ˙ U coe 1 Q n ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 pmatcollpwscmat.p P = Poly 1 R
2 pmatcollpwscmat.c C = N Mat P
3 pmatcollpwscmat.b B = Base C
4 pmatcollpwscmat.m1 ˙ = C
5 pmatcollpwscmat.e1 × ˙ = mulGrp P
6 pmatcollpwscmat.x X = var 1 R
7 pmatcollpwscmat.t T = N matToPolyMat R
8 pmatcollpwscmat.a A = N Mat R
9 pmatcollpwscmat.d D = Base A
10 pmatcollpwscmat.u U = algSc P
11 pmatcollpwscmat.k K = Base R
12 pmatcollpwscmat.e2 E = Base P
13 pmatcollpwscmat.s S = algSc P
14 pmatcollpwscmat.1 1 ˙ = 1 C
15 pmatcollpwscmat.m2 M = Q ˙ 1 ˙
16 crngring R CRing R Ring
17 1 2 3 12 4 14 1pmatscmul N Fin R Ring Q E Q ˙ 1 ˙ B
18 15 17 eqeltrid N Fin R Ring Q E M B
19 16 18 syl3an2 N Fin R CRing Q E M B
20 1 2 3 4 5 6 7 pmatcollpw N Fin R CRing M B M = C n 0 n × ˙ X ˙ T M decompPMat n
21 19 20 syld3an3 N Fin R CRing Q E M = C n 0 n × ˙ X ˙ T M decompPMat n
22 16 anim2i N Fin R CRing N Fin R Ring
23 22 3adant3 N Fin R CRing Q E N Fin R Ring
24 simp3 N Fin R CRing Q E Q E
25 24 anim1ci N Fin R CRing Q E n 0 n 0 Q E
26 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 pmatcollpwscmatlem2 N Fin R Ring n 0 Q E T M decompPMat n = U coe 1 Q n ˙ 1 ˙
27 23 25 26 syl2an2r N Fin R CRing Q E n 0 T M decompPMat n = U coe 1 Q n ˙ 1 ˙
28 27 oveq2d N Fin R CRing Q E n 0 n × ˙ X ˙ T M decompPMat n = n × ˙ X ˙ U coe 1 Q n ˙ 1 ˙
29 28 mpteq2dva N Fin R CRing Q E n 0 n × ˙ X ˙ T M decompPMat n = n 0 n × ˙ X ˙ U coe 1 Q n ˙ 1 ˙
30 29 oveq2d N Fin R CRing Q E C n 0 n × ˙ X ˙ T M decompPMat n = C n 0 n × ˙ X ˙ U coe 1 Q n ˙ 1 ˙
31 21 30 eqtrd N Fin R CRing Q E M = C n 0 n × ˙ X ˙ U coe 1 Q n ˙ 1 ˙