Step |
Hyp |
Ref |
Expression |
1 |
|
pmatcollpwscmat.p |
|
2 |
|
pmatcollpwscmat.c |
|
3 |
|
pmatcollpwscmat.b |
|
4 |
|
pmatcollpwscmat.m1 |
|
5 |
|
pmatcollpwscmat.e1 |
|
6 |
|
pmatcollpwscmat.x |
|
7 |
|
pmatcollpwscmat.t |
|
8 |
|
pmatcollpwscmat.a |
|
9 |
|
pmatcollpwscmat.d |
|
10 |
|
pmatcollpwscmat.u |
|
11 |
|
pmatcollpwscmat.k |
|
12 |
|
pmatcollpwscmat.e2 |
|
13 |
|
pmatcollpwscmat.s |
|
14 |
|
pmatcollpwscmat.1 |
|
15 |
|
pmatcollpwscmat.m2 |
|
16 |
|
simpl |
|
17 |
|
simpr |
|
18 |
17
|
adantr |
|
19 |
|
simpr |
|
20 |
19
|
anim2i |
|
21 |
|
df-3an |
|
22 |
20 21
|
sylibr |
|
23 |
1 2 3 12 4 14
|
1pmatscmul |
|
24 |
15 23
|
eqeltrid |
|
25 |
22 24
|
syl |
|
26 |
|
simprl |
|
27 |
1 2 3 8 9
|
decpmatcl |
|
28 |
18 25 26 27
|
syl3anc |
|
29 |
|
df-3an |
|
30 |
16 28 29
|
sylanbrc |
|
31 |
|
eqid |
|
32 |
7 8 9 1 31
|
mat2pmatval |
|
33 |
30 32
|
syl |
|
34 |
18 25 26
|
3jca |
|
35 |
34
|
3ad2ant1 |
|
36 |
|
3simpc |
|
37 |
1 2 3
|
decpmate |
|
38 |
35 36 37
|
syl2anc |
|
39 |
38
|
fveq2d |
|
40 |
39
|
mpoeq3dva |
|
41 |
|
simp1lr |
|
42 |
|
simp2 |
|
43 |
|
simp3 |
|
44 |
25
|
3ad2ant1 |
|
45 |
2 12 3 42 43 44
|
matecld |
|
46 |
26
|
3ad2ant1 |
|
47 |
|
eqid |
|
48 |
47 12 1 11
|
coe1fvalcl |
|
49 |
45 46 48
|
syl2anc |
|
50 |
|
eqid |
|
51 |
|
eqid |
|
52 |
|
eqid |
|
53 |
|
eqid |
|
54 |
11 1 50 51 52 53 31
|
ply1scltm |
|
55 |
41 49 54
|
syl2anc |
|
56 |
55
|
mpoeq3dva |
|
57 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|
pmatcollpwscmatlem1 |
|
58 |
|
eqidd |
|
59 |
|
oveq12 |
|
60 |
59
|
fveq2d |
|
61 |
60
|
fveq1d |
|
62 |
61
|
oveq1d |
|
63 |
62
|
adantl |
|
64 |
|
simprl |
|
65 |
|
simprr |
|
66 |
|
ovexd |
|
67 |
58 63 64 65 66
|
ovmpod |
|
68 |
|
simpll |
|
69 |
1
|
ply1ring |
|
70 |
69
|
adantl |
|
71 |
70
|
adantr |
|
72 |
|
pm3.22 |
|
73 |
72
|
adantl |
|
74 |
|
eqid |
|
75 |
74 12 1 11
|
coe1fvalcl |
|
76 |
73 75
|
syl |
|
77 |
1 10 11 12
|
ply1sclcl |
|
78 |
18 76 77
|
syl2anc |
|
79 |
68 71 78
|
3jca |
|
80 |
|
eqid |
|
81 |
2 12 80 14 4
|
scmatscmide |
|
82 |
79 81
|
sylan |
|
83 |
57 67 82
|
3eqtr4d |
|
84 |
83
|
ralrimivva |
|
85 |
|
0nn0 |
|
86 |
85
|
a1i |
|
87 |
11 1 50 51 52 53 12
|
ply1tmcl |
|
88 |
41 49 86 87
|
syl3anc |
|
89 |
2 12 3 68 71 88
|
matbas2d |
|
90 |
1 2 3 12 4 14
|
1pmatscmul |
|
91 |
68 18 78 90
|
syl3anc |
|
92 |
2 3
|
eqmat |
|
93 |
89 91 92
|
syl2anc |
|
94 |
84 93
|
mpbird |
|
95 |
56 94
|
eqtrd |
|
96 |
33 40 95
|
3eqtrd |
|