Metamath Proof Explorer


Theorem pmmpric

Description: The ring of polynomial matrices over a ring is isomorphic to the ring of polynomials over matrices of the same dimension over the same ring. (Contributed by AV, 30-Dec-2019)

Ref Expression
Hypotheses pmmpric.p P = Poly 1 R
pmmpric.c C = N Mat P
pmmpric.a A = N Mat R
pmmpric.q Q = Poly 1 A
Assertion pmmpric N Fin R Ring C 𝑟 Q

Proof

Step Hyp Ref Expression
1 pmmpric.p P = Poly 1 R
2 pmmpric.c C = N Mat P
3 pmmpric.a A = N Mat R
4 pmmpric.q Q = Poly 1 A
5 eqid N pMatToMatPoly R = N pMatToMatPoly R
6 1 2 3 4 5 pm2mprngiso N Fin R Ring N pMatToMatPoly R C RingIso Q
7 6 ne0d N Fin R Ring C RingIso Q
8 brric C 𝑟 Q C RingIso Q
9 7 8 sylibr N Fin R Ring C 𝑟 Q