| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmod.a |
|
| 2 |
|
pmod.s |
|
| 3 |
|
pmod.p |
|
| 4 |
|
eqid |
|
| 5 |
|
eqid |
|
| 6 |
4 5 1 2 3
|
pmodlem2 |
|
| 7 |
6
|
3expa |
|
| 8 |
|
inss1 |
|
| 9 |
|
simpll |
|
| 10 |
|
simplr2 |
|
| 11 |
|
simplr1 |
|
| 12 |
1 3
|
paddss2 |
|
| 13 |
9 10 11 12
|
syl3anc |
|
| 14 |
8 13
|
mpi |
|
| 15 |
|
simpl |
|
| 16 |
1 2
|
psubssat |
|
| 17 |
16
|
3ad2antr3 |
|
| 18 |
|
simpr2 |
|
| 19 |
|
ssinss1 |
|
| 20 |
18 19
|
syl |
|
| 21 |
1 3
|
paddss1 |
|
| 22 |
15 17 20 21
|
syl3anc |
|
| 23 |
22
|
imp |
|
| 24 |
|
simplr3 |
|
| 25 |
9 24 16
|
syl2anc |
|
| 26 |
|
inss2 |
|
| 27 |
1 3
|
paddss2 |
|
| 28 |
26 27
|
mpi |
|
| 29 |
9 25 25 28
|
syl3anc |
|
| 30 |
2 3
|
paddidm |
|
| 31 |
9 24 30
|
syl2anc |
|
| 32 |
29 31
|
sseqtrd |
|
| 33 |
23 32
|
sstrd |
|
| 34 |
14 33
|
ssind |
|
| 35 |
7 34
|
eqssd |
|
| 36 |
35
|
ex |
|