Step |
Hyp |
Ref |
Expression |
1 |
|
pmod.a |
|
2 |
|
pmod.s |
|
3 |
|
pmod.p |
|
4 |
|
eqid |
|
5 |
|
eqid |
|
6 |
4 5 1 2 3
|
pmodlem2 |
|
7 |
6
|
3expa |
|
8 |
|
inss1 |
|
9 |
|
simpll |
|
10 |
|
simplr2 |
|
11 |
|
simplr1 |
|
12 |
1 3
|
paddss2 |
|
13 |
9 10 11 12
|
syl3anc |
|
14 |
8 13
|
mpi |
|
15 |
|
simpl |
|
16 |
1 2
|
psubssat |
|
17 |
16
|
3ad2antr3 |
|
18 |
|
simpr2 |
|
19 |
|
ssinss1 |
|
20 |
18 19
|
syl |
|
21 |
1 3
|
paddss1 |
|
22 |
15 17 20 21
|
syl3anc |
|
23 |
22
|
imp |
|
24 |
|
simplr3 |
|
25 |
9 24 16
|
syl2anc |
|
26 |
|
inss2 |
|
27 |
1 3
|
paddss2 |
|
28 |
26 27
|
mpi |
|
29 |
9 25 25 28
|
syl3anc |
|
30 |
2 3
|
paddidm |
|
31 |
9 24 30
|
syl2anc |
|
32 |
29 31
|
sseqtrd |
|
33 |
23 32
|
sstrd |
|
34 |
14 33
|
ssind |
|
35 |
7 34
|
eqssd |
|
36 |
35
|
ex |
|