Step |
Hyp |
Ref |
Expression |
1 |
|
pmodlem.l |
|
2 |
|
pmodlem.j |
|
3 |
|
pmodlem.a |
|
4 |
|
pmodlem.s |
|
5 |
|
pmodlem.p |
|
6 |
|
simpl11 |
|
7 |
|
simpl12 |
|
8 |
|
simpl13 |
|
9 |
|
ssinss1 |
|
10 |
8 9
|
syl |
|
11 |
3 5
|
sspadd1 |
|
12 |
6 7 10 11
|
syl3anc |
|
13 |
|
simpr |
|
14 |
|
simpl31 |
|
15 |
13 14
|
eqeltrd |
|
16 |
12 15
|
sseldd |
|
17 |
|
simpl11 |
|
18 |
17
|
hllatd |
|
19 |
|
simpl12 |
|
20 |
|
simpl13 |
|
21 |
20 9
|
syl |
|
22 |
|
simpl31 |
|
23 |
|
simpl32 |
|
24 |
|
simpl21 |
|
25 |
|
simpl22 |
|
26 |
|
simpl23 |
|
27 |
3 4
|
psubssat |
|
28 |
17 24 27
|
syl2anc |
|
29 |
28 26
|
sseldd |
|
30 |
20 23
|
sseldd |
|
31 |
19 22
|
sseldd |
|
32 |
29 30 31
|
3jca |
|
33 |
|
simpr |
|
34 |
|
simpl33 |
|
35 |
1 2 3
|
hlatexch1 |
|
36 |
35
|
imp |
|
37 |
17 32 33 34 36
|
syl31anc |
|
38 |
|
simp31 |
|
39 |
38
|
snssd |
|
40 |
|
simp22 |
|
41 |
39 40
|
sstrd |
|
42 |
|
simp23 |
|
43 |
42
|
snssd |
|
44 |
|
simp11 |
|
45 |
|
simp12 |
|
46 |
45 38
|
sseldd |
|
47 |
46
|
snssd |
|
48 |
|
simp21 |
|
49 |
44 48 27
|
syl2anc |
|
50 |
49 42
|
sseldd |
|
51 |
50
|
snssd |
|
52 |
3 4 5
|
paddss |
|
53 |
44 47 51 48 52
|
syl13anc |
|
54 |
41 43 53
|
mpbi2and |
|
55 |
|
simp33 |
|
56 |
44
|
hllatd |
|
57 |
|
simp13 |
|
58 |
|
simp32 |
|
59 |
57 58
|
sseldd |
|
60 |
1 2 3 5
|
elpadd2at2 |
|
61 |
56 46 50 59 60
|
syl13anc |
|
62 |
55 61
|
mpbird |
|
63 |
54 62
|
sseldd |
|
64 |
17 19 20 24 25 26 22 23 37 63
|
syl333anc |
|
65 |
23 64
|
elind |
|
66 |
1 2 3 5
|
elpaddri |
|
67 |
18 19 21 22 65 29 34 66
|
syl322anc |
|
68 |
16 67
|
pm2.61dane |
|