Step |
Hyp |
Ref |
Expression |
1 |
|
pmodlem.l |
|
2 |
|
pmodlem.j |
|
3 |
|
pmodlem.a |
|
4 |
|
pmodlem.s |
|
5 |
|
pmodlem.p |
|
6 |
|
simpr |
|
7 |
6
|
oveq1d |
|
8 |
|
simpl1 |
|
9 |
|
simpl22 |
|
10 |
3 5
|
padd02 |
|
11 |
8 9 10
|
syl2anc |
|
12 |
7 11
|
eqtrd |
|
13 |
12
|
ineq1d |
|
14 |
|
ssinss1 |
|
15 |
9 14
|
syl |
|
16 |
|
simpl21 |
|
17 |
3 5
|
sspadd2 |
|
18 |
8 15 16 17
|
syl3anc |
|
19 |
13 18
|
eqsstrd |
|
20 |
|
oveq2 |
|
21 |
|
simp1 |
|
22 |
|
simp21 |
|
23 |
3 5
|
padd01 |
|
24 |
21 22 23
|
syl2anc |
|
25 |
20 24
|
sylan9eqr |
|
26 |
25
|
ineq1d |
|
27 |
|
inss1 |
|
28 |
|
simpl1 |
|
29 |
|
simpl21 |
|
30 |
|
simpl22 |
|
31 |
30 14
|
syl |
|
32 |
3 5
|
sspadd1 |
|
33 |
28 29 31 32
|
syl3anc |
|
34 |
27 33
|
sstrid |
|
35 |
26 34
|
eqsstrd |
|
36 |
|
elin |
|
37 |
|
simpl1 |
|
38 |
37
|
hllatd |
|
39 |
|
simpl21 |
|
40 |
|
simpl22 |
|
41 |
|
simprl |
|
42 |
1 2 3 5
|
elpaddn0 |
|
43 |
38 39 40 41 42
|
syl31anc |
|
44 |
|
simpl1 |
|
45 |
|
simpl21 |
|
46 |
|
simpl22 |
|
47 |
|
simpl23 |
|
48 |
|
simpl3 |
|
49 |
|
simpr1 |
|
50 |
|
simpr2l |
|
51 |
|
simpr2r |
|
52 |
|
simpr3 |
|
53 |
1 2 3 4 5
|
pmodlem1 |
|
54 |
44 45 46 47 48 49 50 51 52 53
|
syl333anc |
|
55 |
54
|
3exp2 |
|
56 |
55
|
imp |
|
57 |
56
|
rexlimdvv |
|
58 |
57
|
adantld |
|
59 |
58
|
adantrl |
|
60 |
43 59
|
sylbid |
|
61 |
60
|
exp32 |
|
62 |
61
|
com34 |
|
63 |
62
|
imp4b |
|
64 |
36 63
|
syl5bi |
|
65 |
64
|
ssrdv |
|
66 |
19 35 65
|
pm2.61da2ne |
|