| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pmodlem.l |
|
| 2 |
|
pmodlem.j |
|
| 3 |
|
pmodlem.a |
|
| 4 |
|
pmodlem.s |
|
| 5 |
|
pmodlem.p |
|
| 6 |
|
simpr |
|
| 7 |
6
|
oveq1d |
|
| 8 |
|
simpl1 |
|
| 9 |
|
simpl22 |
|
| 10 |
3 5
|
padd02 |
|
| 11 |
8 9 10
|
syl2anc |
|
| 12 |
7 11
|
eqtrd |
|
| 13 |
12
|
ineq1d |
|
| 14 |
|
ssinss1 |
|
| 15 |
9 14
|
syl |
|
| 16 |
|
simpl21 |
|
| 17 |
3 5
|
sspadd2 |
|
| 18 |
8 15 16 17
|
syl3anc |
|
| 19 |
13 18
|
eqsstrd |
|
| 20 |
|
oveq2 |
|
| 21 |
|
simp1 |
|
| 22 |
|
simp21 |
|
| 23 |
3 5
|
padd01 |
|
| 24 |
21 22 23
|
syl2anc |
|
| 25 |
20 24
|
sylan9eqr |
|
| 26 |
25
|
ineq1d |
|
| 27 |
|
inss1 |
|
| 28 |
|
simpl1 |
|
| 29 |
|
simpl21 |
|
| 30 |
|
simpl22 |
|
| 31 |
30 14
|
syl |
|
| 32 |
3 5
|
sspadd1 |
|
| 33 |
28 29 31 32
|
syl3anc |
|
| 34 |
27 33
|
sstrid |
|
| 35 |
26 34
|
eqsstrd |
|
| 36 |
|
elin |
|
| 37 |
|
simpl1 |
|
| 38 |
37
|
hllatd |
|
| 39 |
|
simpl21 |
|
| 40 |
|
simpl22 |
|
| 41 |
|
simprl |
|
| 42 |
1 2 3 5
|
elpaddn0 |
|
| 43 |
38 39 40 41 42
|
syl31anc |
|
| 44 |
|
simpl1 |
|
| 45 |
|
simpl21 |
|
| 46 |
|
simpl22 |
|
| 47 |
|
simpl23 |
|
| 48 |
|
simpl3 |
|
| 49 |
|
simpr1 |
|
| 50 |
|
simpr2l |
|
| 51 |
|
simpr2r |
|
| 52 |
|
simpr3 |
|
| 53 |
1 2 3 4 5
|
pmodlem1 |
|
| 54 |
44 45 46 47 48 49 50 51 52 53
|
syl333anc |
|
| 55 |
54
|
3exp2 |
|
| 56 |
55
|
imp |
|
| 57 |
56
|
rexlimdvv |
|
| 58 |
57
|
adantld |
|
| 59 |
58
|
adantrl |
|
| 60 |
43 59
|
sylbid |
|
| 61 |
60
|
exp32 |
|
| 62 |
61
|
com34 |
|
| 63 |
62
|
imp4b |
|
| 64 |
36 63
|
biimtrid |
|
| 65 |
64
|
ssrdv |
|
| 66 |
19 35 65
|
pm2.61da2ne |
|